
Haskell and functional programming: a love letter

Philippe Pittoli

ABSTRACT

Haskell is a well-known functional programming language combining a unique set of features. This
document will present the core concepts of functional programming through the Haskell syntax and modules.
Some tips will be given on PureScript, an Haskell-like language aiming to replace JavaScript in web
development.

This document is a collection of notes (on Haskell, FP, some APIs). This is not intended for a large public.
However, a large part of it should be relevent for any FP and non-FP developer alike: take whatever you can!
Also, I think mathematical-ish explanations of the language are a massive obstacle to its actual comprehension
for a developer, so this document will be almost exempt of it. You’re welcome.

Check out for newer versions: https://t.karchnu.fr/doc/haskelltut.pdf

And if you have questions: karchnu@karchnu.fr

Lastly compiled the 9/10/2022 (day/month/year, you know, like in any sane civilization).
Status: sections 1, 2 and 3 are about done. Others: WIP.

1. Functional programming
FP can be seen as an "everything is a function"

paradigm, an attempt to create programs as single
mathematical expressions. In that regard, each line of code
represents the intent of the developer more than how to
perform stuff.

1.1 Why this document?

• FP is great, let’s talk about it.

• Haskell is great because it helps express the code with more
nuances than other languages, but is a bit overwhelming on
first try, so let’s summary stuff.

• Everyone can learn something in this paper, even reading
only the first pages and still writing in imperative languages.

• Explain Haskell, its main API and a few useful modules.

• Provide a few real-life examples.

1.2 Why FP and Haskell?

• Declarative: the language requires to write what is instead
of how to perform an action. This simplifies the code
tremendously, in most cases.

• Simple: the language actually is easy to grasp. There are
many libraries and different ways to code, and this is what’s
actually hard to handle at first.

• Great type system: Haskell has one of the easiest ways to
create types and constraints on types (equality, order, non
empty collection, etc.). Many types are available in the
standard distribution of Haskell, and are basic enough to be
widespread in libraries.

While strict, the type system also allows a very generic
coding style by default. Code reuse is (near?) optimal.

• Concise: functions can be composed together, meaning that
the result of a function is the parameter of another. In
practice, this allows to write very short functions by
removing unnecessary code1.

• Purity (or referential transparency): a function only needs
its parameters to work, no global variables. A pure function
called twice with the same parameters will always provide
the same result. Other functions (called unpure), managing
events outside the application (such as IO in general), have
a distinctive type. Consequently, investigation is easy when
an error occurs: only a fraction of the functions handles
hazardous operations. Furthermore, pure functions are great
candidates for memoization, see the section on

1. Also, parenthesis aren’t all over the place like in other FP languages
(personal preference).

Haskell and functional programming: a love letter Page 2 1. Functional programming

performances.

The purpose of abstraction is not to be vague, but to create
a new semantic level in which one can be absolutely
precise.

— Edsger W. Dijkstra

1.3 Sections

First, we’ll talk about base concepts in FP, which will provide
everything one need to start with both FP and Haskell. This
will be quick, there is very little theory in this document.

Then the Haskell syntax: an introduction to the type system,
basic types available in any Haskell distribution, how to write
a function, etc.

Usual type classes will be presented to get some sense of the
default Haskell library. This includes the main classes such as
Functor, Applicative and Monad, and many others. The
understanding of them is crutial: this is required to know how
to use most of the third party libraries.

Some of the most basic functions in the Haskell distribution
will be presented. This includes functions around lists (such
as fold, head and tail, map and filter) a few functions around
the Text module and how to manage user interaction in
general, etc.

Then, a few ways to create complex data structures will be
presented. This includes a clever hack (phantom type), some
conventions to write data structures (tagless final, generalized
algebraic data type) and the reuse of a generic data structure
(Free monad).

After these sections, a few advanced topics are very briefly
introduced:

• Lenses, to handle complex or nested data structures. This
was one of the worst aspects of Haskell, until Lenses made
nested structures so simple to manage that it became an
asset.

• Networking, to exchange packets with widespread
protocols.

• Profiling applications, to know what function actually takes
time or memory to compute. As we will see, this is very
empirical.

• Performances, to gain massive computation boosts with
some tips. This includes rewriting functions in an
optimizable way or use proper types, for example.

• Parallelism and concurrency, to either make several
computations at the same time on different cores, or switch
between two computations that require pauses2.

2. For example, receiving network packets takes time, and a packet can be

Then, a misc section, for everything that is useful but doesn’t
belong anywhere else.

Finally, this document provides a few pointers on useful
documentations to dig more advanced concepts.

How to read this document

The following presents a typical function declaration.

multBy2 :: Int -> Int Function’s type
multBy2 x = x * 2 its name, param and body

Function multBy2 takes an integer and returns an integer.

Another function declaration, with a slightly different syntax.

add :: Int -> Int -> Int Function’s type
add x y its name and parameters

= x + y its body

The first line is the function’s type: add takes two integers and returns another one. The
second line is the function name and named parameters (x and y). The last line is the
body of the function. In Haskell, indentation is important to know what is the context of
the function or not, but it isn’t strict on the number of spaces.

This document will sometimes present function results, example:

1 + 2 some function call
> 3 and its result

2. Core concepts

Functional programming brings some concepts that aren’t
present (or widespread) in other paradigms. This section
presents some of these concepts: currying, function
composition, High Order Functions, referential
transparency(purity) and laziness.

2.1 Currying

Or, why do functions take a single argument?

In Haskell and other functional programming languages,
functions only take a single argument. Let’s take an example
with a function add, which is the sum of two integers.

received only partially and requires to wait to retrieve the rest, and with
concurrency the application can perform other actions while waiting for
the packet to arrive. This improves performances by a large margin
without even requiring parallelism.

Haskell and functional programming: a love letter Page 3 2. Core concepts

add :: Int -> Int -> Int
add x y = x + y

The first line is the type of the function. One way to
understand the type Int -> Int -> Int is that the function takes
two integers and returns another one. But why is this written
without a clear difference between parameters and the
returned value? Because we can partially apply the function.

add1 :: Int -> Int
add1 = add 1

add1 is add but with a default parameter.

How to read this? Function add1 uses the add function with a
default parameter set to 1. (add 1) is a function. It returns a
function taking a single integer and returning an integer. add1 could
have been written with an explicit parameter this way
add1 x = add 1 x but since it is just the partial application of another
function, there is no need.

Currying: each time a parameter is provided to a function, another
function is returned. This goes until all parameters are provided and
the function actually is performed.

In Haskell and in functional programming in general, the concept of
currying functions is widespead, and brings conciseness and code
reusability. Plenty of examples will be presented later.

2.2 Function composition

Function composition is the act of pipelining the result of one
function, to the input of another. This is almost like in shell
but the order is reversed, and typed3.

the ’.’ operator is used to compose functions

result of ‘sort‘ is pipelined to ‘reverse‘
sort_and_reverse = reverse . sort

the result is a descending sort (from 10 to 1)
countdown = sort_and_reverse [2,8,7,10,1,9,5,3,4,6]

shorter
countdown = (reverse . sort) [2,8,7,10,1,9,5,3,4,6]

3. Data isn’t just serialized in strings like in shell (for the most part). And
each output type of a function must be the input type of the following
function in the composition.

2.3 High Order Functions

Functions in functional programming languages are simple
types, they are treated as any other type. Functions can be
given as parameters for other functions.

(* 2) is a function multiplying by two
a value given in parameter
map (* 2) [1,2,3,4,5]
> [2,4,6,8,10]

map is a function taking another function as its first parameter, and applies it to each
element of a list.

2.4 Referential transparency (Purity)

Referential transparency (or purity) is the property of an
expression when it only uses its parameters to compute a
value. In this context, two computations of the same
expression with the same parameters will produce the same
result. Example: 1 + 2 will always produce 3. Functions
aren’t pure when they rely on input and output, like
networking. A function can be recognized as non pure given
its type, when the function relies on the IO monad for example
(see later for details).

Why is purity a big deal? Two examples.

• Memoization: purity ensures that two computations produce
the same result. Memory can be traded for computation
speed. Pure functions can be called once for a given set of
parameters, and their result can be stored in memory. There
is a gain when the computation is longer to execute than a
lookup in a table.

Memoization can transform naive implementations of some
recursive algorithms into legitimate solutions.

• Common subexpression elimination: the compiler can
optimize the code by rewritting some expressions.

these two expressions share a common computation:
a = b * c + g
d = b * c * e

and can be rewritten this way:
tmp = b * c
a = tmp + g
d = tmp * e

In this example, b * c is factored, but it works with any pure function.

2.5 Laziness

Laziness means to compute a value only when
necessary. Why calculate every element of a list when you
only use the first one?

Haskell and functional programming: a love letter Page 4 2. Core concepts

take 5 elements of an infinite list
take 5 $ [1..]
> [1,2,3,4,5]

Laziness is great for creating simpler programs. Algorithms
can sometimes be expressed in a simpler way when infinite
lists aren’t a problem.

In practice, we all encountered an example of laziness that
makes programming easier: shells.

find / |
grep -E "(foo|bar)" |
head -n 5 | # take only 5 elements
mail -s "5 foo bar stuff" somebody@example.com

In this example, once 5 elements get to pass the grep filter, this script stops. Millions of
files could be on this system, they won’t be explored. Shell is lazy: a program stops when
the next program in the pipeline closes its input, not only when it finishes its task.

However, laziness could be detrimental to performances, too. As
with the shell, laziness has a cost. See the section on performances.

3. Introduction to Haskell
Functional and imperative programming languages are

differents on many levels. This section provides an overview
on those differences.

This section presents:

• an implementation of the fibonacci sequence to get a taste
of those differences with a concrete yet simple example;

• a few Haskell basic types;

• the Haskell syntax for functions;

• the Haskell type system, which includes basic types such as
integers and characters, but also more advanced types such
as sum, product and algebraic types;

• a gentle introduction to Haskell type classes.

And finally, a brief discussion on the Haskell language,
functional programming in general and the rest of the
document.

3.1 A first example

Just to get started on how to write a program with a
functional programming language, here is an example: the
fibonacci sequence.

fib :: Int -> Int
fib 0 = 0
fib 1 = 1
fib x = fib (x-1) + fib (x-2)

A few notes on what is happening:

• The first line is the type of the function: it accepts an Int as
its first (and only) argument and returns another Int.

• The body of the function changes depending on the
argument value.

• Finally, if the parameter isn’t 0 or 1, it performs
fib (x-1) + fib (x-2) , which can be read as the
mathematical expression of the Fibonacci sequence.

Compared to an imperative programming language, the code
for this function is considerably smaller and more readable.
This can be explained in several points:

• Recursion: the function calls itself. Some algorithms are
easier to write this way, there is no need for loops and
maintaining a state (an index and accumulators in this case).

• Pattern matching: while there is no explicit conditions, the
function actually provides a different implementation
depending on the value of the parameter. The behavior of
the function is trivial to read, less error-prone than with
explicit conditions.

• No return statement: a function in Haskell is a declaration, it
says what is. This is not a set of instructions to execute, this
is a single expression representing what the function mean.
Consequently, the whole expression is to be executed and its
single produced value is to be returned by the function.

3.2 A few Haskell basic types

Before introducing syntax for functions, a quick
overview of very simple types in Haskell.

5 :: Int
5.5 :: Float
[1,2,3] :: [Int] list of integers
’H’ :: Char
True :: Bool
"hello" :: String
[’w’,’o’,’r’,’l’,’d’] :: String (or [Char])
("smth", 8) :: (String, Int) tuple

Some function types (details later).

Haskell and functional programming: a love letter Page 5 3. Introduction to Haskell

(+) :: Num a => a -> a -> a
’a’ = Number type (Int, Float, ...)

(==) :: Eq a => a -> a -> Bool
’a’ = type that can be tested for equality

Both functions have a constraint on their parameters. Function + requires both its
parameters to be numbers, (==) requires its parameters to be any type that can be tested
for equality (like integers). More on constraints later.

Just a taste of how we can define data structures.

real definition of Bool in the standard library
data Bool = False | True

A Bool is either a True or a False. True and False are called constructors.

real definition of String in the standard library
type String = [Char] list of Char

A String is a list of Char (characters), they are synonyms. Also, writing a string
with ``hello`` is syntactic sugar for [’h’, ’e’, ’l’, ’l’, ’o’]

3.3 Haskell’s syntax for functions

Functions in imperative and functional languages are
different concepts.

In an imperative language, a function is a set of instructions to
execute and are gathered and named to be called later, possibly
several times or just to cut the code in more readable pieces.
This is more efficient than having to copy the same
instructions each time they are needed: fewer lines of code,
fewer potential errors, and the code is more readable.

In a functional language, the whole function is a declaration, a
single expression, the content is what the function means4.
The entire body of the function is the returned value.
Functions can still be complex, and composed of several
function calls. However, all these function calls are bounded
together, by an operator for example5.

The syntax for functions is rather extended in Haskell
compared to an imperative language. Following sub-sections
present different ways to create functions.

4. And since the function carries a meaning, there is little to no place to
add unrelated instructions in a function in FP. This may seem like a
curse, but this is actually a bless in disguise. One can write any
debugging code without interfering with the actual useful code, debug
has to be separated from the rest. Also, functions in the standard library
are almost always one-liners.

5. This will be explained in details later (with monads).

3.3.1 Pattern Matching

A function can take parameters, and the function body can
change according to their value. The fibonacci sequence
included pattern matching on a number.

fib :: Int -> Int
fib 0 = 0 in case param == 0
fib 1 = 1 in case param == 1
fib x = fib (x-1) + fib (x-2) otherwise

In practice, pattern matching is often used on data structures.

not :: Bool -> Bool
not True = False
not False = True

Constructors, such as True and False for the Bool data structure, can be used in pattern
matching.

When the actual value of a parameter isn’t necessary, there is no point
to even name it; it can be replaced by an underscore.

not :: Bool -> Bool
not True = False case where the parameter is True
not _ = True any other case

Pattern matching can destructure lists.

Quick introduction to lists:
[1,2,3] list of integers
1:[2,3] add 1 to the head of the list [2,3]

":" is an infix constructor taking
a value and a list

len: computes the number of elements in a list
len :: [a] -> Int
len [] = 0 empty list
len (x:xs) = 1 + len xs at least a value (x)

Function len takes a list (of any type) and returns a number. First case, the function takes
an empty list, its value is 0 (no element in the list). In case the list isn’t empty, it can be
destructured: a list can be seen as the infix constructor : and a first value x followed by
the rest of the list xs. So, once destructured, two informations are available: x (the head
value of the list) and xs (the rest of list, potentially empty).

Since the function len only has to compute the number of elements,
the actual value of x isn’t important, let’s rewrite:

len :: [a] -> Int
len [] = 0
len (_:xs) = 1 + len xs x became ’_’

This time, the function doesn’t name the list’s head: it is explicitly ignored.

Haskell and functional programming: a love letter Page 6 3. Introduction to Haskell

Also, {} can be used to pattern match on the constructor regardless of
the content of the type.

data Foo = Bar | Baz Int
g :: Foo -> Bool
g Bar {} = True
g Baz {} = False

Pattern matching on more complex types will be presented
later.

3.3.2 Guards

Pattern matching provides a different function body according
to the value of a parameter. Sometimes, this is not enough,
and the parameter has to be tested more thoroughly, by calling
a function for example. Guards provide a different function
body according to tests on values.

not :: Bool -> Bool
not v

| v == True = False
| otherwise = True

Guards elegantly replace some conditional instructions (predicates) at the start of
imperative functions.

Predicates and function’s body are clearly identified.

3.3.3 Case ... of

A value can be tested through case ... of which is like a switch
in C, for example.

not :: Bool -> Bool
not v = case v of

True -> False in case v is True
_ -> True in case v is any other value

3.3.4 Anonymous functions: lambdas

An anonymous function is created with the backslash
character \ followed by the parameters, then an arrow (->) and
finally the body of the function. This anonymous function is
called a lambda6.

6. Since the mathematical explanation of lambdas is completely overkill to
understand how to use them, it is discarded in this document. You’re
welcome.

add 5 to each element of a list
map (\x -> x + 5) [1,2,3,4,5]
> [6,7,8,9,10]

sum both elements of each tuple
map (\(x,y) -> x + y) [(1,2),(3,4),(5,6)]
> [3,7,11]

Lambdas are widespread in Haskell and in FP in general since
this makes the code very concise. However, when possible,
use partial function application (even more concise), by
example:

map (\x -> x + 5) [1,2,3,4,5]
could be written this way:

map (+ 5) [1,2,3,4,5]

3.3.5 Where and let

Within the scope of a function, one can declare functions or
constant values.

health :: Float -> Float -> String
health height weight

| bmi < 18.5 = "underweight"
| bmi >= 18.5 && bmi < 25.0 = "normal weight"
| bmi >= 25.0 && bmi < 30.0 = "overweight"
| bmi >= 30.0 = "obesity"
where bmi = weight / (height * height)

health 1.62 70
> "overweight"

Function health uses the value bmi computed within the function, after the where
keyword. The value bmi uses any available value within the context of the function
health. In this case, bmi uses both height and weight.

Besides indentation, functions within the context of a function aren’t
different from what the document shown before. They also can have
an explicit type.

health height weight
[...]

where
bmi :: Float
bmi = weight / (height * height)

Function bmi doesn’t need parameters since it already has access to the relevant values
(in the scope of the health function).

The let notation can be put in any place where a statement is
expected. That is the main difference with where. Example:

Haskell and functional programming: a love letter Page 7 3. Introduction to Haskell

f :: s -> (a,s)
f x =

let y = ... x ...
z = ... x ...

in y/z

Let or where?

Chosing either let or where is mostly a matter of taste.
Though, one could be prefered in some cases. Refactoring is
easier with let when the declarations have to be put inside a
lambda expression, for example. However, where is prefered
when the same declaration should be shared between several
expressions, which would imply some boilerplate with let.

Refactoring this
f x =

let y = ... x ...
in y

into this
f = State $ \x ->

let y = ... x ...
in y

wouldn’t have been possible with ’where’.

However, writing this with ’let’ would be painful
f x

| cond1 x = a
| cond2 x = g a
| otherwise = f (h x a)
where

a = w x
(it could been mixed with ’case’ to make it work,
but ultimately make it harder to write and to read)

Chosing the right one comes with experience, nothing to worry about.

3.4 Haskell’s type system

This document already introduced primitive types
(integer, float and character) and a few others: Bool, tuples and
lists. Functions also have their own type, and can be passed as
function parameter as any other type of value.

This section introduces a few aspects of the Haskell type
system. First, holes to ask the compiler what type is required
at some point. Second, the multiple ways to
create new structures with the data keyword. Finally,
type synonyms, with the type keyword, to make the code more
understandable to other developers7.

7. Documentation through type names is both elegant and effective, even if
this isn’t sufficient by any mean.

3.4.1 What type should I use? Holes!

Haskell has a great type inference. When writing a
function, the actual type of the missing code can be asked to
the compiler by writing a hole in the code, which is any name
starting with an interogation (?) character.

foo :: Int -> Int -> Int
foo x y = x + ?a the hole is named ’a’

For an unnamed hole, write an underscore.
Holes also work in function types.

3.4.2 Data structures

One of the big challenges of a developer is to create data
structures. Once this part is done, related code almost writes
itself. Following sub-sections present different ways to create
structures with the data keyword.

0.0.0.1. Sum

A sum type is a simple enumeration.

data Bool = False | True

how to create a Bool value
isItTrue = True

not :: Bool -> Bool
not True = False
not False = True

A boolean value is either true or false, which is a sum type. Both True and False are
constructors for the type Bool. Pattern matching works on constructors.

Check for non exhaustive patterns with -fwarn-incomplete-patterns.

0.0.0.2. Product

A product type is a type containing data.

data Figure = Rectangle Double Double

how to create a Figure
myRectangle = Rectangle 10.0 30.0

pattern matching on Figure
area :: Figure -> Double
area (Rectangle height width) = height * width

In this example, Rectangle is a constructor to create a value of type Figure and it
contains two floating point numbers. Pattern matching works on constructors, and their
parameters are named to be used in the function.

Haskell and functional programming: a love letter Page 8 3. Introduction to Haskell

0.0.0.3. Record

Record type is a product type with named parameters.

data Figure = Rectangle { height :: Double
, width :: Double }

works as before
myRectangle = Rectangle 10.0 30.0

works as before
area :: Figure -> Double
area (Rectangle height width) = height * width

This time, Rectangle has two named parameters: height and width. Creating a
figure works as before, and pattern matching too.

Naming parameters automatically creates functions with the same
names to get their value from a figure8.

compute area without pattern matching
area :: Figure -> Double
area f = height f * width f

In this example, functions height and width were used instead of the pattern matching.

Since constructor parameters are named, this is possible:

Naming constructor values on declaration.
myRectangle = Rectangle { height = 5.0

, width = 10.0 }

Getting only a subset of constructor values.
h (Rectangle {height=v}) = v

Naming constructor parameters is ∞ better than only passing arguments by value.
The function h takes a Rectangle as parameter, but the parameters of the constructor
aren’t mentionned. The actual useful value (height) can be obtained directly. This way,
data structure can evolve without breaking anything.

0.0.0.4. Algebraic

Algebraic type is both sum and product types.

data Figure
= Rectangle Double Double
| Disc Double

myDisc = Disc 5.0
myRectangle = Rectangle 5.0 10.0

area :: Figure -> Double
area (Rectangle h w) = h * w
area (Disc r) = pi * r ** 2

Convenient: each figure has its own statement, any error become obvious and a missing
case would be automatically detected. The equivalent in imperative programming is less

8. This forces developers to think about names, not to overlap with
preexisting functions.

readable.

0.0.0.5. Recursive

An algebraic data type is recursive if its declaration involves
itself. This is common to describe lists, trees, etc.

data List
= Element Int List
| End

someList :: List
someList = Element 1 (Element 2 End)

mult2 :: List -> List
mult2 End = End
mult2 (Element x rest) = Element (x*2) (mult2 rest)

mult2 takes a list and returns a list. When the list is empty, the return is an empty list.
When the list isn’t empty, it is destructured to see the current element and the rest of the
elements (which is a list in our definition). The new list is created with the Element
constructor, with our current element x multiplied by 2 as our first parameter, and
mult2 rest as the rest of the list (the second parameter of the Element constructor).

Working with recursive types is a bit complicated. Any function working on all the
elements of the list needs to be recursive, too. Well, for now at least. The Functor
type class will make it trivial.

0.0.0.6. Polymorphic

Types are polymorphic when they have a type parameter,
meaning that the type of the values they contain isn’t fixed.
For example, a list may contain integers, strings or anything
else, and that’s still a list. Fixing the type of the values it
contains would be arbitrary and very limiting.

data List a
= Element a (List a)
| End

listInt = Element 1 (Element 2 End)
listString = Element "Hello" (Element "world" End)

mult2, as before BUT with a constraint on ’a’
mult2 :: Num a => List a -> List a
mult2 End = End
mult2 (Element x rest) = Element (x*2) (mult2 rest)

List a is a list of values of any type. However, its declaration implies that a list is
composed of values of the same type, a list cannot contain both an integer and a string.
Working with types like this may require to constrain the inner value types, as it is done
in mult2 with the Num constraint (inner values have to be numbers).

0.0.0.7. Summary on data types

Let’s recap the available data types in Haskell.

• sum type: simple enumerations.

• product type: data structure needs to store a value (not just
the constructor).

Haskell and functional programming: a love letter Page 9 3. Introduction to Haskell

• record type: product type with names for the stored values.

• algebraic type: sum of product values. This can be
combined with recursive and polymorphic types.

• recursive type: data structure includes itself in its definition.

• polymorphic type: data structure needs to store a value
without imposing the type.

Haskell is built on these types, they all have a purpose and
help describe different data structures.

3.4.3 Type synonyms

A floating point number can be a height, a length, a random
number, or the average size of guinea pigs in a pet store.

What does the surface function compute?
What are the parameters? Its returned value?
surface :: Float -> Float -> Float

Writing Float as a parameter doesn’t provide any meaning.
To that end, type synonyms help writing more meaningful
function types.

type Height = Float
type Width = Float
type Area = Float
surface :: Height -> Width -> Area

There are probably better ways to name this function, but still, now its parameters and the
return value are explicit.

Type synonyms provide the semantic behind the types.

3.5 Haskell’s type classes

Types may be related to each other. An integer and a
float, wheither their size, are both numbers, for example. A
class of types is defined by the functions they implement. The
class Num (numbers) is defined by the functions related to
numerical operations, such as +, -, *, / and so on.

In Haskell, many type classes are provided by default, and
some will be introduced later.

Syntax

Let’s see some parts of the Haskell standard library: the
Semigroup class. Semigroup is just a fancy word to say
something really simple. It represents types with values that
can be appended, joined, concatened to each other9. The list

9. There are plenty of other terms like "Semigroup" used in Haskell that
actually aren’t complicated. They will be translated for the mere

type is part of the semigroup class: [1,2] can be concatened to
[3,4] and produces [1,2,3,4] (in this order).

The following example shows the definition of Semigroup in
the standard library, then implements an instance for the
recursive and polymorphic data type List a, defined earlier (in
the "polymorphic type" section).

Type class definition: function(s) to implement
to be part of it.
class Semigroup a where

<> is a concatenation operator.
(<>) :: a -> a -> a

instance for the "List a" type
instance Semigroup (List a)

Implementation time!
’<>’ operator: appending two lists.
End <> End = End
(Element x xs) <> End = Element x xs
End <> (Element y ys) = Element y ys
(Element x xs) <> (Element y ys)

= Element x (xs <> (Element y ys))

To implement the <> operator is very similar to create a new list. We should always
start with the simpler case: both lists are empty, so the result is an empty list. In case one
of the lists is empty, the result is the content of the other one. Finally, in case both lists
have values, the result is a construction of a list with the values of the first list first. The
concatenation of two lists, let’s say [1, 2] and [3, 4] will result in [1, 2, 3, 4] (in that
order).

Plenty of examples are provided in the section on usual type classes.

Laws

Sometimes, in order to have a meaningful type class, the
behavior of the structure, given a function, has to be imposed.
For example, the <> function from the Semigroup type class
requires the data structure to be associative.

associtivity is required for the operator ’<>’
(a <> b) <> c == a <> (b <> c)

a associated with b THEN associated with c has to provide the same result as a associated
with the result of b associated with c.

Always verify that your structure satisfies the laws required by the
type classes you implement. Otherwise the semantic of the type class
will be broken and the behavior won’t make sense10.

Summary

A type class regroups similar types, related to each other
by the functions they can perform. Sometimes, they have to
obey laws, such as associativity, in order to ensure an expected

mortals in due time, don’t worry.

10. Furthermore, it could be completely legitimate for the compiler to
implement code optimizations to cut a few function calls, or rewrite
some functions, based on these laws.

Haskell and functional programming: a love letter Page 10 3. Introduction to Haskell

behavior for all these types.

Type classes maximize code reusability since functions are
very generic, and can work not with types, but with classes of
types.

Type inference is simple, too. When writing a function,
finding the required type classes only is searching for used
functions in available type classes. Example: in the function
blah x y = x + y since + is used on both x and y, they both
need to be in the type class Num.

3.6 Modules

Any non trivial program needs to split its code base into
managable pieces. Each file will represent a module which
can be imported (even partially) in other modules.

Module import

somewhere on your system there is a file named
data/bytestring.hs
import Data.ByteString

Import all functions and types from the module.

import qualified Data.ByteString as B

Import all functions and types from the module, but they all have to be prefixed by B.

import Data.ByteString (pack, unpack)

Import only pack and unpack functions.

import Data.ByteString (ByteString)

Import only the ByteString type (not its constructors).

import Data.ByteString (ByteString(..))

Import the ByteString type and its constructors.

import Data.ByteString hiding (head)

Import all functions and types except the function head.

Module declaration

File: some/simple/module.hs
module Some.Simple.Module where
followed by the module’s code

All functions and types in the module are exported by default.

with explicit exports
module Some.Simple.Module (

some, functions, or, Types(..), to, export
) where

3.7 Discussion on Haskell and common concepts

This section shown most of the common ways to create
functions and data structures in Haskell. This is a boring but
non avoidable part of the journey to learn the language, and
this only scratched the surface.

Haskell is an evolving language, more than most other
languages. It already has many extensions and more will
come since Haskell is made by researchers constantly playing
with the language. Fortunately, there is no point trying to
document every extension: the core of the language actually is
robust and wasn’t touched in decades.

To understand idiomatic Haskell code, to understand
functionnal programming and to be able to write any non
trivial program, the next three sections are necessary. The first
presents some very widespread data structures. The second
presents the usual type classes, found in almost every non
trivial code. This includes type classes used to structure the
code (chaining function calls for example) and an introduction
to unpure functions. And the third section presents the usual
functions used in Haskell code.

4. Usual data structures
Haskell provides some very simple and ubiquitous data

structures. This very brief section covers some of them.

4.1 Bool

A boolean value is either true or false. Haskell has
probably one of the simplest way to express this.

Haskell and functional programming: a love letter Page 11 4. Usual data structures

data Bool = True | False

This is a sum data type.

4.2 List

A list in Haskell is as simple as one can expect.

data List a = Nil | Cons a (List a)

This is a polymorphic, recursive data type.

However, lists do have special notations in Haskell. List a is written
as [a], the empty list (Nil) as [] and the constructor Cons is found as
an infix operator (:) about everywhere in Haskell code.

4.3 String

A String is a list of characters.

type String = [Char]

This isn’t a data structure but a type synonym. Still, it made sense to show this here.

4.4 Maybe

The Maybe data structure is simple: either there is a
value (stored with the Just constructor) or there is nothing.

data Maybe a = Just a | Nothing

This is a polymorphic algebraic data type. Those words aren’t so scary now, heh?

4.5 Either

A computation can work or fail, which already can be
represented by a Maybe value. However, uppon failure, an
error value could be interesting to get instead of Nothing.

The Either data type is exactly that, a way to convey a
potential error value.

data Either a b = Left a | Right b

This is a polymorphic algebraic data type, as Maybe.

5. Usual Haskell type classes
A type class represents a property of a data type. For

example, a type that isn’t empty (NonEmpty), or that can be
serialized in a printable string format on the terminal (Show).
Type classes allow developers to focus on an abstraction of the
types they work with; a function can express constraints on its
parameters instead of actual types11.

The section introducing Haskell summarized type classes as a
set of functions. A type needs to implement them to be part of
the type class. Implementation also needs to respect a set of
laws depending on the semantic of the type class, such as
associativity or transitivity for example.

Many type classes exist in the standard distribution of Haskell.
Most of them are widespread in libraries since they are useful
in many contexts. Here is a first sample: Num (numbers), Eq

(types that can be tested for equality), Ord (types that can be
sorted), etc.

Knowing all classes and their little implementation details
isn’t necessary. However, a few of them are really interesting
from an educational perspective or for composing bigger
programs.

In this section, Eq and Ord type classes are first introduced.
They provide simple examples of actual type classes and how
to create instances. Then, the three usual type classes Functor,
Applicative and Monad since they are related to each other and
widespread in Haskell. Each of them allows to abstract some
parts of usual code structure, such as loops, some conditions
and a bit of error management. Some widespread monads will
be introduced, such as the IO monad, allowing us to write our
first application: a magnificent hello world! Finally, a brief
conclusion on type classes and their usefulness.

5.1 Eq: types that can be tested for equality

The Eq type class represents all types that can be tested
for equality. It is based on the Bool data type, and requires
only to define a single function to test for equality. Here is the
definition:

class Eq a where
(==), (/=) :: a -> a -> Bool

x /= y = not (x == y)
x == y = not (x /= y)

Either the operator (==) is defined or its opposite (/=) The other will be derived
from the implemented one, see the default implementations.

An example of data structure, part of the Eq type class:

11. And abstract code isn’t in any way a synonym of slowness. This idea
will be destroyed in the section on performances.

Haskell and functional programming: a love letter Page 12 5. Usual Haskell type classes

data Room = Room Int a room has a number

instance Eq Room where
Rooms are "equal" if they have the same number.
(Room x) == (Room y) = x == y

The Room data structure represents a room with a number in an hostel, for example. This
example shows how to implement an instance of the Eq type class.

Then, the code can be tested in GHCi:

r1 = Room 4
r2 = Room 4
r3 = Room 8
r1 == r2
> True
r1 == r3
> False

Before switching to another type class, here is the
implementation of the Eq type class for the Maybe data
structure.

data Maybe a = Nothing | Just a
deriving (Eq, Ord)

The actual implementation doesn’t even exist: it is derived automatically. This way of
deriving implementations of type classes from data structures won’t be covered right now.
See later sections.

5.2 Ord: types that can be sorted

The Ord type class represents all types that can be
sorted (is a value smaller or equal than another). The type
class introduces the following data structure and function.

data structure to compare values
data Ordering = LT | EQ | GT

Ord depends on the class Eq: any sortable
value has to be part of the Eq type class
class Eq a => Ord a where

only function to implement
compare :: a -> a -> Ordering

Here is an implementation of the type class for the previous
Room data structure.

instance Ord Room where
’compare’ already exists for integer values
compare (Room x) (Room y) = compare x y

Now the Room data structure is part of the Ord type class, a list

of rooms can be sorted.

import Data.List (sort)
sort [Room 2, Room 3, Room 1]
> [Room 1, Room 2, Room 3]

As you can expect, some functions require their parameter to
allow sorting. Sorting functions, sure, but also min and max

functions for example.

Some widespread types and data structures are part of the Ord
typeclass, such as Int, Maybe and Either for example.

sort [Right 2, Right 1]
> [Right 1, Right 2]

Nothing fancy.

This also works with nested structures.

sort [Right (Just 2), Right (Just 2)]
> [Right (Just 1), Right (Just 2)]

like, for real
sort [Right (Just (Right (Room 2)))

, Right (Just (Right (Room 1)))
]

> [Right (Just (Right (Room 1)))
, Right (Just (Right (Room 2)))
]

Let’s break the last example. The sort function allows to sort a very nested structure.
How? The Room structure is part of Ord so it can be sorted. Either too, so
Right (Room 1) is sortable. Since this can be sorted and that Maybe is part of the Ord
typeclass, then Just (Right (Room 1)) also can be sorted, etc.

And we just touched something really interesting with Haskell.
Despite its simplity, code is generic and reusability is great!

5.3 Functor: applying a function in a structure

A functor is a type allowing to apply a function to its
inner value(s), through a fmap function. The following code
represents the Functor type class and the only required
function.

class Functor a where
fmap :: (a -> b) -> f a -> f b

fmap takes a function (from a to b) and a functor (such as a list) containing values of type
a. The fmap function produces a functor with values of type b.

fmap and map functions are synonyms for a list. Here is an example.

Haskell and functional programming: a love letter Page 13 5. Usual Haskell type classes

fmap (+3) [1,2,3]
> [4,5,6]

The fmap function for lists applies a function to each element of that list, and returns a
new list.

And as we saw with the type of the fmap function, the returned
functor can have a different inner type. Example:

fmap show [1,2,3]
> ["1","2","3"]

The show function takes a value and provides a string representation.

Lists aren’t the only functors. Any type containing data (product
data type) can be a functor. Maybe and Either are functors, too. So
it is possible to apply a function to their inner values.

fmap (+3) (Just 3)
> Just 6
fmap (+3) (Nothing)
> Nothing

In case the Maybe functor contains a value, the function is applied. Otherwise, it just
returns Nothing.

fmap (+3) (Right 3)
> Right 6
fmap (+3) (Left "error")
> Left "error"

The behavior of the Either functor is similar to Maybe. In case there is a value
(read: a Right value), the function is applied to it. In case there is an error (read: a
Left value), the function is ignored.

The general idea is the same behind both the Maybe and the Either
functor implementations: either the value is valid and the function is
applied to it, otherwise the error value is returned. This isn’t exactly
the same as the list functor, where the data type doesn’t represent any
possible "error". The implementation of the Functor type class
actually depends on the semantic of the data type.

Maybe implementation

To further demystify the Functor type class, here is the
implementation for the Maybe data type.

instance Functor Maybe where
fmap _ Nothing = Nothing
fmap f (Just a) = Just (f a)

In case the maybe has no value, this returns nothing. Otherwise, this creates a new
Maybe with f a as the value.

Imperative vs functional structure manipulation

Functors are a way to manipulate data structures.

The following figure compares a list manipulation from C and
Haskell perspectives.

C

st = ...

for (int i = 0; i<= st.len; i++) {

...

}

Haskell

fmap ... structure

Functor
manual structure manipulation vs fmap

(Bloat) code required in C to loop over the data in red. Green boxes represent code for
data manipulation. Manipulated structure is in italics.

Why is this interesting? First, mindless code should be removed
from the source. In this example, writing code to browse a list is a
very common pattern, it should be abstracted12. Second, having an
abstraction on "browsing a structure" allows to change the structure at
no cost. What if the structure wasn’t a simple list anymore? The C
code should be rewritten completely.

Synonym: infix <$> operator

Finally, the fmap function has a synonym: the infix
operator <$>

(+1) <$> Just 1
> Just 2

This may not seem much right now, but Haskell is often all about chaining expressions.
Operators are very common, and often add readability with complex code. This operator
<$> actually is relevant for the next sections and to write idiomatic Haskell code.

The following figure shows a diagram of the Maybe functor.

12. Less code means less ways to screw everything, and more focus on the
actual problem to solve. That’s a rule of thumb everybody should try to
follow: write less code unless it makes the code cryptic.

Haskell and functional programming: a love letter Page 14 5. Usual Haskell type classes

f

value
End

<$>

Nothing

Just result

End

Maybe functor
f <$> value

Conclusion on functors

The functor type class allows a great code abstraction.
First, it applies a function to a whole data structure with a
single and simple function call. There is no need for loops,
and it is generic (works the same way for many types).
Second, it follows a general and expected behavior: the
function only applies when relevent, depending on the
semantic of the data structure. The function isn’t propagated
when the data type conveys an error (such as a Left value in
an Either data type).

And keep in mind the <$> operator!

5.4 Applicative: applying parameters to a functor

A functor is a type containing data that can be changed
through the fmap function. The applied function may require
several arguments, and applying it to a single argument creates
another function. Example:

remember, <$> is an infix ‘fmap‘
(+) <$> Just 3
> Just (3+)

Unfortunatelly, GHCi cannot print functions this way, but this is the right result.
In functional programming, a data can be a function, as any other value. The Maybe
functor now contains a function, lacking an argument.

An applicative functor is a way to provide a parameter to a functor.
The Applicative type class introduces the infix operator <*> to apply
a new parameter to a functor.

(+) <$> Just 3 <*> Just 2
> Just 5

The (+) function gains a first argument with fmap (<$>) and creates the Just (+3)
value (which is (3+) in the Maybe functor). Then, the function (3+) is passed to the
Just 2 value via the <*> operator. And this completes the function call and the result is
Just 5

Why is this a thing? Applicative functors present a way to handle
a common code structure. Let’s see the following example:

C

function1 ()

function2 ()

function3 (ret1, ret2)

...

...

ret1 =

if (ret1 == ...)

ret2 =

if (ret2 == ...)

Haskell

function3

function1

function2

<$>

<*>

Applicative functor:
getting function3 parameters ready, then call it

Error checking is in red, error management is in blue, function calls are in green.

In this example, in both C and Haskell, we try to call f with the
results of function1 and function2 as parameters. Both handle
errors: in case either the first or the second function fails, the rest isn’t
called and the function returns an error value. This error value is
either a default error value, such as null in C or Nothing in Haskell,
or the value provided by the defective function.

In C, the current function can do anything at any time, even returning
unrelated values for example. In Haskell, both three functions have
the same return type (implementing operators <$> and <*>). Thus,
errors are handled in a standardized way: error management is written
in the data structure code, once.

Implementation example: Maybe

f

function1

function2

End

End

End

f is a function
requiring 2 parameters

function f is now complete
and can be called

Nothing

Nothing

Just result
give result to f

Just result
give result to f

<$>

<*>

Maybe Applicative functor
f <$> function1 <*> function2

Haskell and functional programming: a love letter Page 15 5. Usual Haskell type classes

Implementation example: Either

f x y

First step of the
evaluation is: f <$> x
So x is tested

Intermediate state of the
evaluation is:
Right (f value1) <*> y

<$> <*>

1st possible return
Left error1

2nd possible return
Left error2

Last possible return
Right (f value1 value2)

x is
Left error1

x is
Right value1

y is
Left error2

y is
Right value2

Either Applicative Functor
f <$> x <*> y

Conclusion on applicative functors

As we saw earlier, data structures implementing fmap

(to apply a function to the data) are called functors. If the
applied function requires more than one parameter, it is
curried: the data structure now contains a partially applied
function. Applicative functors are about providing a new
parameter to this function.

Functors and applicative functors help the developer: both
were created because of recurring patterns in applications.
Functors allow to manipulate data in data structures, no matter
how complex the data structure is. Applicative functors gather
all parameters to a function call, allowing to write code almost
as simple as f3(f1(), f2()) (in imperative languages) while still
handling errors13.

Generic and expressive data structures such as Maybe and
Either implement both Functor and Applicative type classes.
This allows developers to manipulate elements of these data
structures and to chain function calls in a standardized way.

5.5 Monad: binding functions

In functional programming, and particularly in Haskell,
a function is a single expression. However, one may want to
perform multiple function calls in this single expression. A
Monad is about binding these function calls together14.

Binding function calls is like a try and catch in other

13. In Haskell, something like f3(f1(), f2()) can be written as
f3 <$> f1 <*> f2 which is both safe (errors are handled) and
standardized.

14. It is frightening that nobody just says this to explain monads. The
mathematical explaination is incredibly useless when talking to
developers, stop even trying.

languages. In Java for example, when a function returns an
exception, the remaining function calls are ignored and the
exception is catched. The try and catch mechanism allows to
write less conditions on the return values of the functions;
there is no need to test if they failed and error management is
separated from regular instructions.
The following figure shows the difference between C error
management and the Java’s try and catch mechanism.

JAVA

function1()

function2()

function3()

function4()

...

try

catch ...

C

function1 ()

function2 ()

...

...

ret1 =

if (ret1 == ...)

ret2 =

if (ret2 == ...)

Try & Catch vs fully imperative error management

Function calls are green boxes, error management are blue boxes. (Bloat) code required
in C to check for errors is in red.
The try and catch mechanism groups all function calls, error management is elsewhere
later in the code. This greatly improves readability with multiple function calls.

Monads are simpler than try and catch: they are operators (simple
functions) binding function calls15. In practice, a Monad is defined
by three functions:

• (>>=), also known as the bind operator, which computes
the first function and give the result to the second (as its last
argument);

• (>>), also known as the then operator, which computes the
first function and drop the result then computes the second;

• return, which takes a value and puts it in the context of the
monad (as the pure function in the Applicative type class).

The implementation of these operators depends on the monad.
The following examples, with Maybe and Either monads,
provide the general idea behind monads.

The Maybe Monad

A monad was created from the Maybe data structure.
And this can be summarized this way: either there is a value
and the next function is called, or the computation stops and
returns Nothing.

Let’s take an example: three functions in the Maybe monad
(returning a Maybe value).

15. Also, monads are more generic than try and catch since the behavior
can be changed (it depends on the monad) and do not require a
compiler-supported mechanism.

Haskell and functional programming: a love letter Page 16 5. Usual Haskell type classes

function1, function2 :: Maybe Int
function3 :: Int -> Maybe Int
expression = function1 >> function2 >>= function3

function1 and function2 provide a Maybe Int (they have no parameters) and
function3 has a single Int parameter.

The following figure represents the expression function.

function1

function2

function3

End

End

End

Nothing

Nothing

Nothing

>>

>>=

Just result
ignore result

Just result
give result to

function3

Just result

End

Maybe monad: function1 >> function2 >>= function3

First, function1 is called. In case its result is Nothing, the expression
stops and returns Nothing. Otherwise, function2 is called. Again, in case its
result is Nothing, the expression stops and returns Nothing. Otherwise,
the result of function2 is provided as argument to the next function. This value isn’t
in a Maybe structure.

Let’s take a few examples with concrete values.

function3 x = Just (x+3)
Just 1 >> Just 2 >>= function3
> Just 5
Nothing >> Just 2 >>= function3
> Nothing

The implementation is fairly simple to guess.

instance Monad Maybe where
(Just x) >>= k = k x
Nothing >>= _ = Nothing

The monad type class only requires to implement the (>>=) operator. The (>>) operator
is derived from the previous one, and the return function is defined by default as a
synonym of the pure function in the Applicative type class.

The Maybe monad is very simple and works well to chain filter
functions, similar to the shell programs: cat file | grep
value | grep othervalue > result. However, the
Maybe structure is fairly limited: functions cannot indicate an error,
which will be fixed with the next monad.

The Either Monad

function1

function2

function3

End

End

End

Left error

Left error

Left error

>>

>>=

Right result
ignore result

Right result
give result to

function3

Right result

End

Either monad: function1 >> function2 >>= function3

Conclusion on monads

5.6 The IO monad

5.6.1 To sort

• Num: numbers.
Required functions: + * abs signum fromInteger negate

• Eq: types that can be tested for equality.
Required function: (==)

• Ord: types that can be ordered.
Required function: compare

• Semigroup: types that can be concatened together (such as
lists).
Required function: (<>)

• Monoid: semigroup with an identity value. An identity
value can be an empty list for a list type.
Required function: mempty

Monad Foldable Read Alternative Show

5.7 Alternative

The Alternative class helps chaining function calls and
takes the first valid value returned by these functions.

The definition of the Alternative class:

Haskell and functional programming: a love letter Page 17 5. Usual Haskell type classes

class Applicative f => Alternative f where
The identity of ’<|>’
empty :: f a

An associative binary operation
(<|>) :: f a -> f a -> f a

In the Alternative type class, two functions are defined: empty and <|>

The instance for the "Maybe" type:

instance Alternative Maybe where
empty = Nothing

Nothing <|> r = r
l <|> _ = l

First, our value if nothing is matched: Nothing. Then, either the first parameter is
invalid so the second is given, or the first parameter is valid and it is used.

In practice: let’s use the module Parsec to parse an URL scheme
with this logic:

pScheme :: Parser Text
pScheme

= string "file"
<|> string "ftp"
<|> string "https"
<|> string "irc"
<|> string "mailto"

In case you were wondering: string is a Parsec function testing a string at the current
index location of the parsed data. In this case, the function tests for the scheme in the
URL.

The main difference between Alternative and a simple or
statement in an imperative or object-oriented programming language
is the type: the semantic16 is preserved. In an imperative language,
this is valid:

if True or 1 or some_structure:
serious(fuckingsly)

or, in some languages:

val = True or 1 or some_structure

Both examples are valid in Python.

5.8 Arrows

Arrows are another way than monads to express a
logical implication between function calls.

16. Ok, maybe not exactly the "semantic" but mostly the type, which is
already a big step forward.

6. Useful functions

6.1 show and read

6.2 list functions

Head Tail

a b c d

Init Last

6.2.1 Const and (:)

6.2.2 length and null

6.2.3 (!!)

6.2.4 elem

6.2.5 (++)

6.2.6 take and drop

6.2.7 takeWhile and dropWhile

6.2.8 reverse

6.2.9 cycle

6.2.10 repeat

6.2.11 replicate

6.2.12 sum product maximum minimum

6.2.13 map

Haskell and functional programming: a love letter Page 18 6. Useful functions

6.2.14 fold

the following produces [], the list identity
foldr (:) []

catamorphism is when a function produces an identity given a
constructor for a data type. foldr is the list catamorphism.

• foldl is an imperative loop

• foldr is a constructor replacement

6.2.15 scan

6.3 Functions on tuples

6.3.1 zip and zipWith

fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

6.4 String manipulation

6.4.1 chr and ord

chr :: Int -> Char
ord :: Char -> Int

7. Complex data structures

7.1 Generalized Algebraic Data Types

7.2 Phantom type

7.3 Tagless final

7.4 Free monad

8. Lenses: getters and setters on
steroids

Lenses help manipulate complex, nested data structures.
Let’s consider the following types.

data Task = Task
{ taskName :: String
, taskExpectedMinutes :: Int
, taskCompleteTime :: UTCTime }

data Project = Project
{ projectName :: String
, projectCurrentTask :: Task
, projectRemainingTasks :: [Task] }

8.1 The problem

How to edit the content of the task (let’s say, its name)?
Pattern matching is great for simple tasks, but becomes really
verbose in nested structures.

To be defined or to finish.

8.2 A first attempt to tackle the problem

Let’s define a modifying function.

truncateName :: Task -> Task
truncateName task

= task { taskName = take 15 originalName }
where

originalName = taskName task

This code is near the verbosity of a imperative (or Object-
Oriented) language. This is near JavaScript code. And the
code isn’t even nested yet: the function becomes even harder
to write when the parameter is a Project instead of directly
getting the Task.

8.3 Lenses to the rescue!

Another way to proceed is to create lenses functions,
helping us to easily reach inner structure values. Lenses come
in different flavors:

Haskell and functional programming: a love letter Page 19 8. Lenses: getters and setters on steroids

• lenses for record structures.
Example: Foo = Foo { x :: Int, y :: Int }

• prisms for sum structures.
Example: X = A | B | C

• transversal for collections types.
Examples: Lists, Array, Map, etc.

8.3.1 Actual lenses

Now, given the lens package, let’s rewrite our
structures.

data Task = Task
{ _taskName :: String
, _taskExpectedMinutes :: Int
, _taskCompleteTime :: UTCTime }

generate lenses for Task
makeLenses ’’Task

data Project = Project
{ _projectName :: String
, _projectCurrentTask :: Task
, _projectRemainingTasks :: [Task] }

generate lenses for Project
makeLenses ’’Project

As shown, Haskell can generate lenses for our records: it only
requires each element to start with an underscore. This really
is helpful not to have to write many mindless functions.

Our code now has new functions, such as taskName and
projectRemainingTasks for example. These functions allow
to get and set values. To illustrate, some examples:

Let’s rewrite our last function.
truncateName :: Task -> Task
truncateName task

= task { _taskName = take 15 originalName }
getting originalName is now simpler with
where originalName = view taskName task

view is a function to retrieve a value from a structure through a lens and taskName is the
lens function to get (or set) _taskName from a Task type.

In practice, chaining operations will be common, such as getting a
value from an inner structure and apply a function to it. To that end,
operators are more idiomatic to use than functions. So let’s see a few
operators.

view taskName task
is equivalent to
task ˆ. taskName

And this is convenient for unnamed structures as well:

(1,3) ˆ. _2
> 3

_2 is a generic lens to get the second element of a tuple.

Changing a value inside a structure is easy, too. The right value has
to be selected, then a function can be applied to it.

(1,3) & _2 %˜ (+3) modify second element
> (1,6)

The & operator allows to prefix the value, such as ˆ. did for the view function, but
this time the value is changed (or only some parts). In this example, & combined to the
operator %˜ allowed to easily modify part of the value (the second element of the tuple).
The operator .˜ takes the new value, %˜ takes a function to modify the selected value.

Handling complex structures is one of the few parts of FP where
introducing operators is essential to keep the code clean. Lenses
introduce an overwhelming amount of operators17, only a very few
are necessary for a start and for most operations. Chaining operations
is easy, and the more operations there is, the simpler it is compared to
other programmation paradigms.

(1,3)
& _1 %˜ (+2) modify first element
& _2 %˜ (+3) modify second element

> (3,6)

Operations can be chained, easily.

Now, let’s try nested structures. Important note: lenses have to be
composed in reverse order from the nesting.

("hello", (1,3))
& (_2._1) %˜ (+2) 1 -> 3
& (_2._2) %˜ (+3) 3 -> 6
& _1 %˜ (++ " world!")

> ("hello world!", (3,6))

Again, operations can be easily chained.

17. The lens module currently has 109 operators. Apparently there is
never enough! Again, no need to feel overwhelm, most of it is very
specialized and you won’t need it. Also, a lot of them are related to
each other, there is a logic behind it.

Haskell and functional programming: a love letter Page 20 8. Lenses: getters and setters on steroids

8.3.2 Prisms: lenses for sum types

8.3.3 Transversals: lenses for collections

Transversals help browse all elements of a collection, such as
lists, arrays and maps. It sounds a lot like a fmap function,
but there are a couple of differences.

0.0.0.8. At

Get and set values at a given index.

Map.fromList [(1,"world")] ˆ.at 1
> Just "world"

iat: ’at’ with an index
Map.fromList [(1,"world")] ˆ@. iat 1
> (1,Just "world")

at 1 ?˜ "hello" $ Map.empty
> fromList [(1,"hello")]

reverse order, easier to chain stuff! ;)
Map.empty

& at 1 ?˜ "hello"
& at 2 ?˜ "world!"

> fromList [(1,"hello"), (2,"world!")]

0.0.0.9. Contains

Lens to test for an index in a container (such as a set).

IntSet.fromList [1,2,3,4] ˆ. contains 3
> True

IntSet.fromList [1,2,3,4] & contains 3 .˜ False
> fromList [1,2,4]

icontains: ’contains’ with an index
IntSet.fromList [1,2,3,4] ˆ@. icontains 3
> (3,True)

8.3.4 Logic behind operators

This document only shown a few operators out of more than a
hundred in the lens package. This may seem like this

completely went out of control, but there is a logic behind all
that. Here is a little recap.

Operator Meaning

-

ˆ. infix view

containing % usually take a function

ending with ˜ over (%˜) and set (.˜)

containing = like operators ending with ˜ but working
with a State monad

containing @ result contains a value and an index

Vague categorization of lens operators.

Function Operator Meaning Use

view Getterˆ. view lens structure

view _1 (1,2,3)

(1,2,3) ˆ. _1

set Setter.˜ set lens value structure

set _1 1 (0,2,3)

(0,2,3) & _1 .˜ 1

over Get or Set on
collections

over lens f structure

over mapped (+3) [1..5]

over (traverse._1) (+1)
[(0,2),(3,4)]

Basic functions on lenses (and their friends: prisms, transversals, etc.).

9. Networking

10. Profiling

11. Performances
Haskell can be in the same ballpark than C regarding

computational speed. Good performances mostly come from:

• good algorithms;

• the -O2 option to the ghc compiler;

• efficient data structures and types;

• strictness and laziness where they make sense;
(the compiler may do that for you sometimes, with
strictness analysis)

• tail recursion elimination;

• careful function inlining;

• (once everything else is done) parallelism or concurrency.

Since refactoring Haskell code is considerably easier than
most languages, one could write a naive but valid
implementation as a start then make incremental changes to

Haskell and functional programming: a love letter Page 21 11. Performances

make it efficient. A naive implementation can be 100 times
slower than an optimized one. However, writing this valid-
but-slow solution is really easy given laziness, very generic
functions, etc. There is a trade-off between code optimization
and the time you have to write the implementation. Optimal
code is hard to reach, but good enough is easy.

11.1 newtype

newtype, type and data

To be defined or to finish.

11.2 Memoization

Memoization is a trade-off between memory and computation,
and may transform naive implementations of some recursive
algorithms into legitimate solutions. The idea is simple: keep
the result of pure function calls, so the computation only once
for a given set of parameters. This works with all pure
functions. Memoization can offer recursive algorithms a
massive performance boost. To be defined or to finish.

11.3 Laziness

Laziness

• can make qualitative improvements to performance

• can hurt performance in some cases.
It implies to keep track of what should or shouldn’t be
executed.

• Makes code simpler.

• Makes hard problems conceivable

• Allows for separation of concerns with regard to generating
and processing data.

11.4 Tail recursion elimination

In the general case, a function call is stacked in memory.
The stack is very limited in space, trying to put too much
function calls and there will be a stack overflow. Furthermore,
putting and removing functions calls from the stack has a time
cost. This is enough to be noticed when a recursive function
call itself thousands of times.

The following example shows a naive implementation of
computing the length of a list.

len [] = 0
len (x:xs) = 1 + len xs

This function produces the following stack for a list with three
elements.

call stack for a 3-element list

len (x:xs) = 1 + len xs

len (x:xs) = 1 + len xs

len (x:xs) = 1 + len xs

len [] = 0

There are several steps to optimize this function.

• First, we need to remove the need for multiple stack frames
of the same function. This is done by using an accumulator
parameter to remove the tail recursion.

• Then, the accumulator should be strict. Otherwise it creates
thunks, and this also builds a stack that will end-up in
overflow.

First step

Tail recursion elimination (or tail recursion
optimization) is removing the need to stack a new function call
each time. This reduces both time and space costs of putting
and removing a function call in the stack.

len’ [] acc = acc
len’ (x:xs) acc = len’ xs (1 + acc)

This time, the increment is a function passed to the next
recursion. This function is lazy and won’t be computed right
away, this isn’t efficient and may create a stack overflow. The
compiler should be noticed that the accumulator is strict.

Rewrite the function with a strict accumulator

One way to make sure the accumulator is strict, is to use
the $! operator, which forces a strict evaluation to its right
component.

len’ [] acc = acc
len’ (x:xs) acc = len’ xs $! (1 + acc)

The accumulator is strict, no thunk will be generated and managed, this removes the stack
overflow.

Another way, is to use the BangPattern extension to explicitely say
the accumulator is strict.

Haskell and functional programming: a love letter Page 22 11. Performances

{-# LANGUAGE BangPatterns #-}
len’ [] acc = acc
len’ (x:xs) !acc = len’ xs (1 + acc)

The extension BangPattern has to be enabled, then the only change in the code is
the exclamation point on the accumulator. Flag parameters that are strict is a good
practice. When compiling with -O2 the compiler can find out some of the actual strict
parameters.

A better way

Our len function follows the fold pattern, walking a full
list and returning a single value. So, let’s use it, it even has a
strict variant18!

import Data.List
len = foldl’ (\acc _ -> 1 + acc) 0

Reusing existing functions is simpler, less error-prone and actually more efficient.

Experiment

Several implementations of the len function were
described: the naive without any kind of optimization, the one
introducing an accumulator but without explicit strictness
(neither the $! operator nor the bang pattern), the
implementation with bang patterns, and finally the one with
foldl’. Let’s see how they compare!

optimization naive accumulator bang foldl’

nothing 4358 5286 709 733

-O2 878 396 395 254

Values in milliseconds, average over 100 runs. Standard deviation for these values varies
from 0.1 to 0.4 %. The list has 10 millions entries. This was performed on an Alpine
Linux server. On the same server, a C program only incrementing a value 10 million
times spends 42 ms on the computation.

The table above shows several interesting things:

• one of the optimizations of the -O2 compiler option is
strictness analysis which gave the same speed to the
accumulator function and the explicitely strict version
(bang);

• (follow-up) since strictness analysis works, there is no point
trying to spot every parameter that should be strict, (almost)
naive implementations can still have great performances;

• the program is more than twice faster without tail recursion;

• massive performance gain with the -O2 option (computation
can be 13 times quicker), even using optimized versions
with strictness (almost 3 times);

• standard functions are so darn fast, use them.

18. Remember, conventionaly a function with an apostrophe is a strict
variant in the standard Haskell API.

11.5 Inlining

To be defined or to finish.

Inlining a function

To be defined or to finish.

Prevent inlining

To be defined or to finish.

11.6 Avoiding space leaks

12. Parallelism and Concurrency

13. Advanced concepts
Some concepts are derived from previous properties of

the language. The following explores a few concepts that are
useful in some contexts.

13.1 Continuation: a nice side-effect of composition
WARNING: the following is a draft. NOTHING IS

FINISHED HERE.

You say what comes next, specially when there is a fail. The
side-effect is that no exception system is required19.

safeDivide :: Num a => a -> a -> Maybe a
safeDivide _ 0 = Nothing
safeDivide x y = Just $ divide x y

Continuation Passing Style vs Monads
WARNING: the following is a draft. NOTHING IS

FINISHED HERE.

Continuation Passing Style and Monads are actually
similar. In both cases, the idea is to control the behavior of a
function, whether it works or fails.

Continuation Passing Style is more direct, it is a by-product of
high order functions. Monads are a way to ensure the same
behavior for multiple function calls, that’s a shared,
recognizable pattern.

19. Conferences about continuation by Scott Wlaschin are great learning
resources.

Haskell and functional programming: a love letter Page 23 13. Advanced concepts

13.2 Arrow operator

13.3 Closure
WARNING: the following is a draft. NOTHING IS

FINISHED HERE.

13.4 Free monads
WARNING: the following is a draft. NOTHING IS

FINISHED HERE.
First, a Free Foo happens to be the simplest thing that satisfies
all of the Foo laws. It satisfies exactly the laws necessary to be
a Foo and nothing extra.

A Free Monad is a way to create a Monad from any Functor.

Let’s say we have a functor f.

liftFree :: Functor f => f a -> Free f a
foldFree :: Functor f => (f r -> r) -> Free f r -> r

The first function put your functor f into a Free monad. The second function gets the
value from your functor inside the Free monad.

13.5 Dependency injection (OOP) vs Continuation
Passing Style

Dependency injection is an OOP concept.
The general idea: you have two classes, A and B, and B needs
an instance of A to work. B depends on A. There are two
ways to handle this: either B creates its own instance of A, or
it is provided to B in some way (during the construction of B
or later).

Dependency injection mostly allows to provide an
encapsulated state to B. The behavior is changed if the
provided instance is a subclass of A with a different
implementation.

In any case, dependency injection offers a limited control over
the behavior of the functions (methods).

To be defined or to finish.

Stolen from https://danidiaz.medium.com/free-monads-and-
effect-handlers-vs-dependency-injection-bca2eb95e580

Suppose you have a piece of business logic which uses various
high-level interfaces. You don’t want the business logic to
care about how the interfaces are implemented, or where to get
hold of the implementations.

If you are a functional programmer, you might resort to a free
monad, or to some form of effect handlers. If you are an
object-oriented programmer, you turn to dependency injection.

So, are these aproaches basically the same in the end?

I see a couple of differences:

• With free monads/effect handlers, the computation cedes
more control to the interpreter than it would cede to the
dependency injector. Consider errors for example. If you
have an interface for database access injected into your
object, and you call some operation on it, you can catch any
exception the operation throws. With a free monad, you are
at the mercy of the interpreter, which may choose to
terminate the computation right away, force a retry, etc.
(Quote from Reddit user: “DI doesn’t allow controlling the
continuation”.)

• With free monads/effect handlers, you can pass around and
manipulate at runtime values representing abstract
computations not yet tied to any interpreter. This doesn’t
seem to be the case with dependency injection. With
dependency injection, you must provide the
implementations as you construct your enterprise beans;
only afterwards you can pass those beans around.

• With free monads/effect handlers, the interfaces required by
the business logic are reflected in the type signature. With
dependency injection, sometimes you have to stoop down to
inspect a bean’s internal attributes.

13.6 S-Expression (symbolic expression)
WARNING: the following is a draft. NOTHING IS

FINISHED HERE.

A symbolic expression is a convention to represent data. The
core property is the prefixed notation with parenthesis.
Example:

(+ 1 2)

(defun hello-function ()
(print "hello world!"))

13.7 Homoiconicity
WARNING: the following is a draft. NOTHING IS

FINISHED HERE.

Homoiconicity is "code as data".

Said otherwise, code is represented as a series of primitive
structures of the language. For example, in Lisp, the code is a
series of nested lists. This allows very powerful
metaprogrammation: developers can write code that modifies
the code (maybe even at runtime) in a very concise way. All
thanks to the use of primitive structures to represent the code
itself.

Example in LISP:

Haskell and functional programming: a love letter Page 24 13. Advanced concepts

(defmacro print-parameters (f)
‘(print (cdr ’(,@f))))

(print-parameters (+ 1 2))
; (1 2)

13.8 Futures, Monads, Reactive Programming and
Functors

14. To the point
Pure and simple functions (such as addition) are great:

they are independant from the rest of the code. They always
have the same set of parameters, and work always as expected.
But, our program is way more complicated than that.
Sometimes, an error occurs and we have to deal with it. We
still want our application to be seen as a simple and beautiful
mathematical expression. To that end, we need to deal with
errors and conditional computations in a way that can be
semantically understood by a human. We need to
communicate the intent, not just say what must be done.

I’ll describe a few cases and a good way to handle them in
Haskell.

14.1 Error cases

14.1.1 Pure function, single parameter and potential
erroneous parameter.

Let’s see a first example of error management with the
Maybe module. We create a function foo which takes a
parameter. The parameter is a Maybe Int, it can be either a
Nothing (there is no value) or a Just Int We want to perform
a computation our single parameter only in case it is valid.
Otherwise, we should return Nothing.

Here is a first way (but too verbose):

foo :: Maybe Int -> Maybe Int
foo Nothing = Nothing
foo (Maybe x) = Just (x + 2)

We use pattern matching on the parameter, then apply the function (+2) on the Int
contained in the Maybe Int.

A better way:

foo :: Maybe Int -> Maybe Int
foo f = (+2) <$> f

No more pattern matching, the function (+2) is applied to our functor f only when it
makes sense: when it is not Nothing. The operator <$> is an infix version of fmap.

Our second example is based on the <$> operator (which is an infix
version of fmap). This operator is well-known and designed for this
purpose: apply when semantically valid20.

The semantic of the <$> operator depends on the functor. The
Maybe functor applies the function to the content only when there is
one. The Either functor applies the function to the content if it is a
valid value, not an error. Either can be a Right a or a Left b (let’s
say for example a Left String with the string being an error
message), in which case the function isn’t applied.

Our last function is less verbose than the first version. And since the
<$> operator is generic and works for many functors, the type of our
function can be improved to be more generic too. An even better
version:

foo :: Functor f => f Int -> f Int
foo f = (+2) <$> f

We only changed the type of the function. Compare this to what you would have written
in an imperative language.

In this last version, our function is valid for many functors21.

15. Notes: quick and dirty
A list of the most used operators:

($) :: (a -> b) -> a -> b
(<$>) :: Functor f => (a -> b) -> f a -> f b
(<*>) :: Functor f => f (a -> b) -> f a -> f b

And how to use them22:

20. One may refer to the fmap function is a lift function. It takes a pure
function (a -> b) and lift it to be valid in a functor context (f a -> f b)

21. This is a bit like Java interfaces on steroids.

22. Remember: Maybe is a functor, and parameters a and b are simple
types, such as Integer.

Haskell and functional programming: a love letter Page 25 15. Notes: quick and dirty

fun :: Maybe (Int -> Int)
fun = (*) <$> Just 3

app :: Maybe Int
app = fun <*> Just 3

The function fun provides the value 3 to the function (*) and puts it in a Maybe. The
result is Just (2*) and the function in the Maybe functor isn’t complete. The function
app takes Just (2*) and provides another parameter to this function contained in a
functor. Operator <*> is from the Applicative functor, and helps chaining
(potentially faulty) parameters to an "unfinished" function in a functor (Maybe, Either,
etc.). As with the operator If the functor is a Maybe and In case of a problem with one of
the parameters, the whole expression will be replaced by Nothing in a Maybe context
for example.

In an imperative programming language, avoiding a function call in
case of a previous faulty computation can be done in (mainly) two
ways. Either the language implements some sort of "try and catch"
mechanism (Java, Python, Zig, C++, etc.), or the developer has to
check each value by hand (C).

16. Pure theory

16.1 Covariant functor

A covariant functor is a functor with its first argument
being a function like this: (a -> b) followed by a functor f a
and returning a functor f b We can see the types of the
function (from a to b) and the second parameter is f a meaning
that we will apply the function to the content of f (a functor
containing a value of type a) and this will result in another
functor containing a value of type b. This is covariant since
the function given in parameter is from a to b and we have to
apply it to the content of the second parameter (a functor of
type a) to get our result. Types are in the same direction.

In Haskell, the definition of a functor is as follow:

class Functor f where
fmap :: (a -> b) -> f a -> f b

The fmap function is covariant, as we described. The function
a -> b is transformed into a function f a -> f b , and we say
that the function is lifted into f23.

16.2 Contravariant functor

A contravariant functor is defined as a covariant functor,
but the function it takes as a first argument is from b to a.

Whereas in Haskell, one can think of a Functor as containing
or producing values, a contravariant functor is a functor that

23. There are a lot of functors classes: Applicative, Monad,
Bifunctor, etc. To be defined or to finish.

can be thought of as consuming values24.

In Haskell, the Data.Functor.Contravariant module
includes this definition of a Contravariant functor:

class Contravariant f where
contramap :: (b -> a) -> f a -> f b

As we can see, the order of the types for the first parameter are
inversed compared to a covariant functor.

16.3 Bifunctor

A Bifunctor is a functor containing two functors. To be
defined or to finish.

16.4 Profunctor

Profunctor is a bifunctor with a contravariant as its
first argument and a covariant as its second.

17. Lenses: manipulate nested structures
easily

This section is roughly a summary of some books and
web pages (Marick, 2018). To be defined or to finish.

24. This is a citation from the Haskell documentation on
Data.Functor.Contravariant and it deserves a read.

Haskell and functional programming: a love letter Page 26 17. Lenses: manipulate nested structures easily

Optic Meaning Where it is used

Lens’ s a The type s contains a value of type a. Product types like records and tuples.

Prism’ s a Sum types like Maybe and Either.The type s contains zero or one
value of type a, and a is sufficient to
produce an s.

Traversal’ s a The type s contains zero, one, or
many values of type a.

Collections like arrays, maps, and
any other member of the Traversable
type class. They are also a more
general form of lenses and prisms;
traversals which focus on at most
one element (like lenses, prisms, and
their composition) are called affine
traversals.

Iso’ s a The types s and a are isomorphic if
an s is sufficient to produce an a and
vice versa.

Newtypes, interchangeable structures
like Array and List, and any other
pair of types which can be converted
back and forth without losing
information.

18. See also

Here is a list of things that got my attention and may be
useful to you, too.

18.1 A few FP languages worth mentionning

• Haskell: FP without annoying parenthesis, a lot of modules
available, purity, conciseness, laziness, great compiler
debugging capabilities, etc.

• PureScript: (mostly) Haskell for the web, without the
laziness. Syntax and concepts are the same, base modules
are mostly identical, etc. PureScript also provides a very
simple way of interacting with JavaScript.

• carp: statically typed lisp, no garbage collector and focused
on performances. Great for games, video and audio
applications, etc.

18.2 Modules

Here are some interesting modules, either for wide
adoption in any kind of applications or in specific contexts.
Some already are included in base Haskell distributions.

What you need to know to use most of these modules:
Functors, Applicatives, Monads.

• Data.ByteString: a replacement for String focused on
performances and binary representations. It comes in two
varieties: strict and lazy. To be defined or to finish.

• Data.Text: another replacement for String but focused on
Unicode text (contrary to String which accepts any Char

input). It comes in two varieties: strict and lazy, such as
ByteString.

• prettyprinter: a simple way to create pretty outputs for your
types. To be defined or to finish.

• MegaParsec: a library to create compilers. There are many
other libraries like this one, but this is a nice balance
between functionalities, performances and simplicity.

• PyF: a library to format strings, as the f operator in Python.

18.3 Books, website and tutorials

For absolute beginners:

• Learn you a Haskell for Greater Good (Lipovača, 2011)!
Good book about Haskell, for beginners. There are a few
examples to easily understand functions like zip, zipWith,
sort, etc. And the book presents a good part of what’s
actually in this document in a little more verbose way.

Once you understand concepts presented in this document:

• Haskell wiki and its TypeClassOPedia which helps
understand type classes and how to use them. There are
many examples, great source to learn.

• Lenses for the mere Mortal (Marick, 2018) Great learning
resource on lenses, with many explanations and examples.

Haskell and functional programming: a love letter Page 27 18. See also

• Nokomprendo: nokomprendo.gitlab.io, great tutorials on
Haskell, in French. The author also has a youtube channel I
recommand.

19. Misc
This section is a way to provide some unordered

informations.

19.1 Kinds

A simple value (such as a number) and a polymorphic type
without specified type parameters are not the same kind of
data. In the first case, a value is directly usable, in the second
this is a way to create a value. Kinds were introduced to mark
this difference, and a kind can be seen as a type of types.

The Kind * means it is an actual, directly usable type. The
Kind * -> * means the type requires a parameter. Here is a
list of examples:

Int :: * directly usable
Maybe :: * -> * needs an argument
Maybe Bool :: * directly usable
Either :: * -> * -> * takes 2 arguments
a -> a :: * function: directly usable
[] :: * -> * empty list: lacks a type
[Int] :: * list of integers: usable
(->) :: * -> * -> * arrow operator needs 2 types

Kinds of types can be verified with ghci by typing :kind then the type to check.
Example: :kind Maybe

To be defined or to finish.

A simple note...

Most of what was presented here isn’t part of the language, but
only the standard library. Function composition rests on the
operator (.) which only is a simple function in the standard
library. Same thing for (->) operator. To be defined or to
finish.

function composition
(.) :: (b -> c) -> (a -> b) -> a -> c
(.) f g = \x -> f (g x)

20. Annex: code deduplication (OOP < type
classes)

Avoiding duplication is a noble but difficult exercise.
Let’s see how this works in C, C++ and Haskell with some
examples.

20.1 Trivial example

Let’s say we have a function with a structure that can
satisfy several types of arguments. Example, in pseudo code:

function sum (a, b) {
return a + b

}

In C, functions have arguments with a defined type: no
abstraction, whatsoever. A function taking an integer won’t
work with anything else. To make this a bit more generic,
macros can generate functions replacing the types. This is not,
by any mean, a good abstraction, but a quick and dirty hack to
avoid to write several times the same function.

Why is this a problem? Since there isn’t abstraction, functions
have to be duplicated in the code. At the end of the day, the
function will be duplicated in the final executable binary. But
C compilers cannot figure out themselves how to create this
function for other types, the developer has to take care.

In C++, classes and inheritance allow some deduplication.
The function takes a parameter with a class implementing the
right method (in our case, the plus function)25.

class Sumable {
public:

int value;
int sum (Sumable x) {

return value + x.value;
}

};

In this example, the function sum doesn’t require a particular
type. Actual object passed to the sum function is an instance
of the class Sumable or from a class that inherits from it26.

In Haskell, this really is trivial.

25. The class can be abstract or an interface, in which case the actual
implementation comes from another class that inherits from this one.
Naming conventions vary depending on the language, but the idea is
more or less the same.

26. OOP requires multiple inheritance (C++) or interfaces (Java), otherwise
classes would need to duplicate a lot of code.

Haskell and functional programming: a love letter Page 28 20. Annex: code deduplication (OOP < type classes)

type Value = Float

class Sumable a where
sum :: a -> a -> a

instance Sumable Value where
sum = +

The actual value is just a type synonym for a floating-point
number. The type isn’t repeated anywhere in the code,
refactoring is easier this way. Then the type class Sumable is
declared and is composed of a single function sum. This
function takes two parameters and returns a value, all of the
same type (whatever the actual type is). And finally, the
implementation is a synonym of the + function.

20.2 Less trivial code

The problem: represent both a car and a boat. Both
vehicles can start and stop their engine, and have a radio to
play some music.

First, let’s forget about C, this would be very long and
uninteresting to write the actual code. Code deduplication is a
massive failure in C, no need to spend more time on it.

In C++, the code can be written this way.

class Vehicle {
int running = 0; // the engine’s state

public:
void startEngine() { running=1; }
void stopEngine() { running=0; }

};

class Radio {
int running = 0; // the radio’s state

public:
void playRadio() { running=1; }
void stopRadio() { running=0; }

};

class Boat: public Vehicle, public Radio {
};

class Car: public Vehicle, public Radio {
};

Both a car and a boat can start their engine and play radio.
But this isn’t possible to create a function that take either a
boat or a car and start their engine and play radio. To do that,
either the function has to be duplicated in both Car and Boat

classes, or a new class has to be implemented. Since functions

cannot freely ask for multiple criteria, a lot of code has to be
in a class and thought in everything has to be an object, even
simple things.

In Haskell, again, this is trivial code.

data State = On | Off
type Engine = State
type Radio = State
data Car = Car Engine Radio
data Boat = Boat Engine Radio
data Vehicle = Car | Boat

class OwnEngine where
startEngine :: a -> a
stopEngine :: a -> a

class OwnRadio where
startRadio :: a -> a
stopRadio :: a -> a

instance OwnEngine Car where
startEngine (Car _ r) = Car On r
stopEngine (Car _ r) = Car Off r

instance OwnEngine Boat where
startEngine (Boat _ r) = Boat On r
stopEngine (Boat _ r) = Boat Off r

instance OwnRadio Car where
startRadio (Car e _) = Car e On
stopRadio (Car e _) = Car e Off

instance OwnRadio Boat where
startRadio (Boat e _) = Boat e On
stopRadio (Boat e _) = Boat e Off

goToWork :: OwnRadio a, OwnEngine a => a -> a
goToWork = startRadio . startEngine

What a verbose way of doing things.

To be defined or to finish.

data State = On | Off
type Engine = State
type Radio = State
data Car = Car { _carEngine :: Engine, _carRadio :: Radio }
data Boat = Boat { _boatEngine :: Engine, _boatRadio :: Radio }
data Vehicle = Car | Boat

class OwnEngine where

Haskell and functional programming: a love letter Page 29 20. Annex: code deduplication (OOP < type classes)

Lang Code deduplication Problem

C macros no abstraction

C++ Objects, multiple inheritence single criterion
in functions

Java Objects, interfaces single criterion
in functions

Haskell type classes about none

20.3 Conclusion

C is an abstraction over assembly, nothing more. This
has its use: C developers can make an educated guess how the
code will be compiled into assembly. However, code is
constantly duplicated, and the tools at our disposal to make it
more generic are flawed on many points (static code analysis,
type verifications, etc.).

OOP allows some code deduplication. A function can ask for
its parameter to comply with a list of methods (a class).
However, a function cannot ask for many more criteria, which
forces to create new classes or interfaces. The code is more
complex than it has to be27.

FP The language allows to write code without caring for the

27. Actually, OOP is broken beyond repair, never have been a great solution
and never will be, but this deserves its own document.

Haskell and functional programming: a love letter Page 30 20. Annex: code deduplication (OOP < type classes)

21. Annex: a bunch of type classes

Here is a list of the most used type classes.

Type class Meaning Provided methods

Num Numbers + - * / etc.

Eq Types that can be tested for equality eq

Ord Types that can be ordered sort, max, etc

Semigroup Types that can be concatened (<>)

Monoid mempty, mconcat Types with a default value on a an operation
Examples: (Num, 0, +), or (Num, 1, *)

Functor Types containing data on which we can apply functions
Examples: Array, List, Maybe, Either

fmap (<$>)

Applicative Add a parameter to a function in a Functor (<*>)

Alternative (<|>)Can be different values
Example: getUser x = searchLocalUser x <|> searchRemoteUser x

Monad Chaining function calls
Example:
putStrLn "Your name?" >> getLine >>= (\name -> putStrLn ("Your name: " <> name))

Same example but with the do notation:
do putStrLn "Your name?"

name <- getLine

putStrLn ("Your name: " <> name)

bind (>>=) and then (>>)

22. TODO

(+) <$ Just 5 <* Nothing <*> Just 4 <*> Just 3

23. Annex: vocabulary
Browsing through different documentations of the

Haskell language (and FP in general) can be really hard. The
technical corpus one must know prior to the reading of some
of the explanations is almost preposterous28. So, in order to
tackle this problem, here is a list of technical terms explained
in a simple way.

• Class: category of types.
Example: the class Show represents all types that can be
printed in the terminal.

28. And sometimes you get pure garbage descriptions. What’s an
applicative functor? According to the Haskell wiki: "An applicative
functor has more structure than a functor but less than a monad.".
Seriously, is this trolling at an academic level?

• Constructor: keyword to create a structure.
Example: True for a Bool.

• Instance: function implementation for a real type.
Example:

instance Functor Maybe where
fmap _ Nothing = Nothing
fmap f (Just a) = Just (f a)

Haskell and functional programming: a love letter Page 31 23. Annex: vocabulary

• Functor: structure implementing the fmap function, to
change its inner value(s).
Example:

fmap :: Functor f => (a -> b) -> f a -> f b

Previous code snippet shows an instance of fmap.
Usage example (Maybe functor):
fmap (+2) Just 2
> Just 4

Usage example (Either functor):
fmap (+2) Right 2
> Right 4

• Applicative Functor: structure implementing the <*>

operator, allowing to pass arguments to a function in a
functor.
Example:

<*> :: Applicative f => f (a -> b) -> f a -> f b

Usage example (Maybe applicative functor):
Just (+2) <*> Just 2
> Just 4

Usage example (Either applicative functor):
Right (+2) <*> Right 2
> Right 4

• Monad: structure implementing the >>= operator, allowing
to bind function calls together. Said otherwise: the infix
operator >>= takes a monad (containing a value of type a)
and a function taking a value of type a and returning another
monad (containing a value of type b).
Example:

>>= :: Monad m => m a -> (a -> m b) -> m b

Usage example (Maybe monad):
Just 2 >>= \x -> Just (2+x)
> Just 4

Usage example (Either monad):
Right 2 >>= \x -> Right (2+x)
> Right 4

• Variadic: undefined number of something (mostly used to
describe undefined number of parameters for a function).
Functions can have an undefined number of parameters in
C, LISP and many other languages, not in Haskell. To be
defined or to finish. (TODO: maybe reword a bit)

• Prelude: standard library, available by default in every
distribution of Haskell. Even included by default in any
Haskell code without any import statement.

• Recursivity: the definition of something (a function or a
structure) includes itself.
Example:

data List = Element Int List | Void

• Referential transparency and purity: same parameters leads
to same result. A function will always provide the same
result given a set of parameters.
Example: 1 + 1 always returns 2.
These functions only work on their parameters and have
no side effects, they are called pure. On the contrary, when
a function requires side effects (through networking,
printing something in the terminal or getting an input from
somewhere), the function isn’t pure and its result cannot be
known from a previous call.

• Laziness: compute a value only when necessary. As a side
effect, infinite lists are valid in Haskell. An infinite list can
be declared and used, unless the code tries to get all its
values, they won’t be computed.
Example:

taking 5 elements of an infinite list
take 5 $ [1..]
provides: 1, 2, 3, 4, 5

• High order function: treat functions as values.
Example:

apply :: (a -> b) -> a -> b
apply function value = function value

• Predicate: function (or expression) whose range consists of
truth values. See guards for example, they are used to chose
the right function body.

• Coroutine: function that can be interrupted by yielding
(providing a value or not) then resumed where it stopped.

• Closure: To be defined or to finish.

Haskell and functional programming: a love letter Page 32 23. Annex: vocabulary

• Continuation Passing Style (CPS): to add to each function
an extra continuation argument, a function to call to
continue the program instead of simply returning a value.
To be defined or to finish.

• Continuation: functions take an extra parameter
corresponding to the following function to execute, the rest
of the application. Thus, functions do not really end, they
jump to the next function, it is a goto. To be defined or to
finish. (why this can be useful)

• Applicative order: execute code within inner list first.
Example:

x = f (g)

In an Applicative order, g is executed first. This is the case
in most programming languages, and in LISP by default.

• Normal order: evaluate an expression only when needed.
Example:

x = f (g)

In a Normal order, g is executed only if required by f. It is
lazy and it is the way Haskell works.

• Comprehension list: a way to create lists.
Example:

create a list from 1 to infinity
[1..]

create unique pairs of values
from (1,1) to (10,10)
[(x,y) | x <- [1..10], y <- [x..10]]

• Point free: writing a function without explicit parameters.
Example:

add1 = + 1 no explicit integer param
h = reverse . sort no explicit list param

• Eta conversion: making a function either more abstract (eta
expansion) or less abstract (eta reduction).
Example:

\x -> abs x more abstract
abs less abstract

From the first to the second notation: eta reduction. From the second to the first
notation: eta expansion.

• Lambda lifting: taking an inner function (in the where part
of another function) and making it top-level.
Example:

from
f x y = g

where g = x + y
to
f x y = g x y
g x y = x + y

• Free variable: when a value doesn’t come from the context
of the function. A free variable is neither passed as
parameter or computed within the function.
Example:

f x y = g
where g = x + y

Function g contains two free variables: x and y. These values aren’t parameters of the
g function, they’re from the function f.

• Free expression: an expression in which every variable is a
Free variable.

• Thunk: unevaluated code in a non-strict environment.

snd (undefined, 2)
> 2

First element isn’t evaluated since it isn’t required. The value could have been the
result of a very long and complex code, but since it isn’t used, the code behind this
value isn’t evaluated. When the expression snd (undefined, 2) is evaluated, the snd
function takes the second element of the tuple, so the tuple itself is being evaluated,
and the first element is dropped since it won’t be useful later in the code.

• Normal form: fully evaluated value.

Haskell and functional programming: a love letter Page 33 23. Annex: vocabulary

• Weak head normal form: partially evaluated expression.
Any intermediate evaluation between a thunk and a normal
form.

• Persistence: when a value is updated, older versions are still
there, the update isn’t in place.

• Amortization: distribute unequal running times across a
sequence of operations. To be defined or to finish.

• Bottom (⊥): a computation which never completes
successfully. This notation isn’t used in Haskell code, but
rather in documentation to explain the behavior of a
function. The code equivalent of ⊥ is undefined.
Example: the function zip takes two lists as parameters.
When its left list is empty, the function works even if the
right list can’t be computed. However, zip crashes when its
left list can’t be computed. This can be said in the
documentation this way:

remember: this is documentation, not code
zip [] ⊥ = []
zip ⊥ [] = error

References

Brian Marick, Lenses for the Mere Mortal, Lean Publishing
(2018).

Miran Lipovača, Learn You a Haskell for Great Good! No
Starch Press (2011).

