
Notes on Languages

Philippe Pittoli

ABSTRACT

Computer languages are a mess. Tons of languages exist and are intended for general purpose. This
document is my take on computer languages in general: their use, what to expect, what to avoid, some advice.
You’re welcome.

Check out for newer versions: https://t.karchnu.fr/doc/notes-on-languages.pdf

And if you have questions: karchnu@karchnu.fr

Lastly compiled the 9/10/2022 (day/month/year, you know, like in any sane civilization).
Status: WIP

1. Principles
Basics of the Unix Philosophy in a few points

(Raymond, 2003).

• Modularity: write simple parts connected by clean
interfaces.

• Clarity: clarity is better than cleverness.

• Composition: design programs to be connected with other
programs.

• Separation: separate policy from mechanism; separate
interfaces from engines.

• Simplicity: design for simplicity; add complexity only
where you must.

• Parsimony: write a big program only when it is clear by
demonstration that nothing else will do.

• Transparency: design for visibility to make inspection and
debugging easier.

• Robustness: robustness is the child of transparency and
simplicity.

• Representation: fold knowledge into data, so program logic
can be stupid and robust.

• Least Surprise: In interface design, always do the least
surprising thing.

• Silence: when a program has nothing surprising to say, it
should say nothing.

• Repair: repair what you can — but when you must fail, fail
noisily and as soon as possible.

• Economy: programmer time is expensive; conserve it in
preference to machine time.

• Generation: avoid hand-hacking; write programs to write
programs when you can.

• Optimization: prototype before polishing. Get it working
before you optimize it.

• Diversity: distrust all claims for one true way.

• Extensibility: design for the future, because it will be here
sooner than you think.

These principles are still relevant and will continue to be: they
represent good programming practices in general. There is
nothing related to a specific language or environment. Follow
this philosophy as much as you can, it will pay.

A few citations I like about doing the right thing.
(Raymond, 2003)

You have to believe that software design is a craft worth all
the intelligence, creativity, and passion you can muster.

Software design and implementation should be a joyous art,
a kind of high-level play.

2. Assembly
Assembly language is the human form of what is

(almost1) exactly performed by the hardware. The language is
driven by the hardware and all its particularities in term of
memory management, available instructions in the CPU, etc.
What isn’t coded in assembly is (most likely) hardwired,

1. Sometimes it gets a bit more complicated than that. On some CPUs, the
assembly code is rewritten by an internal operating system. But that’s
mostly details about specific hardware, this is not important to
understand what assembly is. Moving on.

Notes on Languages Page 2 2. Assembly

mechanical, electronic. This means the code really is near the
hardware: you can manage the memory up to very narrow
details (such as handling CPU registers explicitly) or use very
specific instructions only your CPU has.

In a sense, assembly code is simple. Each line of code is an
instruction, each instruction is a single operation performed by
the CPU. There is no high-level concept to grasp, only very
basic CPU instructions. This includes loading a value from
the memory, performing a simple arithmetic operation, storing
a temporary value in a register, etc.

; Put the value ’0x61’ (97 in decimal) in the AL register.
movb $0x61,%al

Keep in mind that assembly is the "human readable" version of the actual code executed
by the CPU. This code is converted into series of 1s and 0s.

2.1 From assembly to executable code

Assembly is very simple: what you write is what will be
executed. The application transforming your code into the
final executable binary (named "the assembler") only
"translates" your instructions into binary2. Instructions such as
"mov" will be translated into their actual instruction number,
register names will be translated into their actual address (a
simple number), and that’s about it.

assembly
executable

code

movb $0x61, %al
10110000

01100001

In this example, the assembly code means "write value ’97’ (in
hexadecimal) in the AL register". The code is then translated into
the actual CPU instruction. This shows that the assembly code and
the executable binary are two representations of the same thing.

2.2 Assembly is inconvenient

Assembly is a simple language but it has many flaws.

Non portable. Different CPU architectures require different
assembly code. For example, amd64 and arm64 CPUs have
different instructions, an application written in assembly for a
CPU won’t work for the other.

Difficulty. Assembly requires deep understanding of
computer architectures. Writing a simple hello world already
requires some knowledge about memory sections of

2. Assembly code is almost exactly what is then executed by the CPU.
The assembler does almost nothing and thus it really is fast.

executable binaries, a few CPU registers and what a kernel
interruption is. And this basic application already requires
more than a dozen of lines of code. In any serious codebase,
this kind of verbosity can easily introduce bug-ridden code.

Verbosity. There is not much abstraction from the actual
inner workings of the computer, which makes any operation
quite verbose. Very basic and well-known programming
concepts are missing, including conditionnals and loops.

Debugging is a nightmare. Memory-related bugs are both
frequent in computing and mostly invisible, specially in
assembly code3.

2.3 Assembly in modern age

Assembly is still used nowadays for compiler
development and in a few specific areas. Learning an
assembly language today may be not worth the effort for most
people. Usefulness of writing assembly by hand already was
questioned in the 1950s!

My take. Do not try too hard to learn it. Understanding how
everything works under-the-hood is beneficial mostly for
developers writing operating systems (and related
applications) or compilers. Writing efficient applications often
requires to understand some details of the programming
language used, not to know how to write an entire application
in assembly. Though, understanding some of it already is
valuable, even just for your own general culture.

However, understanding how the computer works is beneficial
for any serious developer. There is a lot to learn: how your OS
handles memory, processes and threads, the basics of
computer networking and file systems, basic data structures,
basic system administration (which is sadly way overlooked),
etc. But it doesn’t have to go as far as learning assembly.

2.4 Some noob questions

Is assembly the ultimate language? Any language
beside assembly is an abstraction that ultimately will be
compiled into an executable code. Since assembly is a human
representation of what the CPU will execute, one could see
any other language as assembly with an extra step. However,
while being great to understand exactly what the CPU does,
this representation actually is the worst way to understand the
business logic of a program. Verbosity hides logic, bugs and
errors. Code should represent the intent, not focus on details
that can be automated.

Is assembly the fastest language? Assembly still can be
more optimized than the best optimizers in C, even if C

3. Since this is a well-known problem, developers now have some leads to
avoid most memory problems. This requires a strong discipline, and a
lot of patience.

Notes on Languages Page 3 2. Assembly

compilers are efficient4. However, the gain is so small that it
isn’t useful anymore by any stretch of imagination. For
instance, one can remove a few instructions from the
generated assembly from C code, which may make your code
run 1⁄100 000 time quicker: who cares? This is a complete
waste of developers time.

Should I learn assembly? Some compiler developers must
understand it to verify their compiler is working correctly and
to implement optimizations. Kernel developers may use it for
drivers5. Security experts should understand at least some of it
to understand security breaches. Beside some very specific
cases like these, assembly just isn’t needed anymore.

3. From assembly to C
Compared to assembly, C represents a very big

improvement on almost every level.

C code runs on several architectures. C is a step toward
architecture abstraction6, this language is "high level" in that
regard. Though, it is still very much bare-metal, the final
binary almost has no overhead compared to assembly. Most
"low-level operations" are still provided as-is, memory is still
explicitely managed, syscalls aren’t sugar-coated, etc.

Readability improved a lot. Memory management is largely
improved thanks to structures, memory offsets are now
automatically handled in most cases7. Code representation
(functions, operators) are now more intuitive and way less
verbose (no more manual stack operations)8. Furthermore,
control flow (conditions and loops) is now easier to read.
Thus, business logic is more explicit.

Type checking is now a thing. Types allow the developer to
reason about the code. Various verifications can be performed
once the types have been correctly managed. C types are very
limited, see the section on Haskell, but they still represent a
big improvement from assembly.

Compiler handles various tasks automatically. For instance,
function calls imply some memory stack management. For
the developer, a function call is a single line of code, or even
embed into a bigger expression, no need to think about stack
pointers.

4. C compilers produce almost no superflous instructions, they may
reorder some operations to optimize the code in known cases, etc.

5. Processors nowadays are so fast that kernel developers may use LUA
for writing drivers instead of assembly. See NetBSD.

6. C and any other language beside assembly, really.

7. Taking a value from a structure "character.name" is easier to understand
than an arbitrary number and an offset, such as "1000 + 30".

8. In assembly, a simple function call may take a dozen of lines,
sometimes more. A function call involves several operations, such as
changing some registers and putting parameters on the stack for
example. In C, as in any other language beside assembly, these
operations are automatically generated during compilation.

assemblyC

push x

push y

call fun

fun(x,y)

In this example, a function "fun" is being called by both C and ASM
code. In ASM, this takes a few lines, and the code actually is
simplified! In real code, this may take a dozen of lines, just for this.
In ASM, business code is always hidden by details, code that could
be abstracted away (it is repetitive, always the same, there is no
reason to write it by hand).

Compile-time verifications. The compiler has to understand
(to some extent) the code in order to produce the binary. Thus,
some verifications are performed before running the
application, which makes debugging way easier.

3.1 Some noob questions on C

Is C the ultimate language? C allows to write very
efficient applications in a more friendly way than assembly.
However, once again, as assembly, the language isn’t a silver
bullet: writing business logic in C may not always be wise.
The rest of the document presents quite a few examples of
such cases.

4. Zig and other "modern C" languages
Some design choices are crippling the C language.

Thus, while having a C-like syntax, some modern languages
provide a few notable improvements. Zig is an example of
such language.

Readability. Despite being a massive improvement coming
from assembly, readability of C code is still very much
perfectible.

Simplistic type system. Generic structures and functions are
hard to achieve. One must either use the macro system9,
inlined functions or void pointers. None of these solutions is
great: they all require some code verbosity, readability issues
or type verification issues at some point.

A simplistic type system leads to simplistic type verifications.

Standard library. C has a very simple library, with few
functions. Each operating system has its own (or several) C
library, and they mostly are the same but may differ slightly.

Portability. C allows to have the same code working on
different architectures, but still has a few interoperability
issues between operating systems. The standard library is
(almost) never enough for an application, and external libraries
often are specific to an OS (specially with user interfaces).

9. C macros are very limited, but that’s a topic for another day.

Notes on Languages Page 4 4. Zig and other "modern C" languages

5. Language paradigms and classifications
Before continuing and reviewing a few other languages,

let’s talk about language classifications.

Language classifications are flawed and may even seem
arbitrary. Boundaries between two language families are often
blur. Thus, this document presents an overview of main
categories of languages, without too much details.

5.1 Imperative vs declarative

A first approach to classify the languages is to start with
these two categories: imperative and declarative.

In an imperative language the developer instructs the machine
how to change its state.

In a declarative language the developer merely declares
properties of the desired result, but not how to compute it.

No boundaries truely separate imperative and declarative
languages, a spectrum is a more appropriate. The following
scheme places the languages mentionned in this document on
a spectrum.

ASM

C
Zig

C++

JAVA

LISP

Haskell

dedicated
languages

Expressiveness

Abstraction

(Control over CPU instructions)

(correlates to verbosity, mostly)
Imperative Declarative

No control

Complete control

Dedicated languages include awk, sed, etc.

This scheme represents languages based on their
expressiveness and abstraction. Expressiveness is, in this
context, the ability for a language to have control over the
instructions executed by the CPU. Abstraction is, in this
context, the ability for a language to let the developer focus on
the problem at hand instead of trivialities, programming
details that can be handled automatically.

ASM is both very expressive and has no abstraction. The
language allows an extreme control over instructions, the
developer actually has to write them all down. And that’s the

main problem: verbosity. An enormous amount of trivial lines
of code is required.

Dedicated languages (such as awk, sed, etc.) are the exact
opposite of ASM. They focus on a specific set of frequently
encountered problems, such as editing a stream of text. Thus,
no control over CPU instructions is provided, only a very
limited set of functionalities. However, the code is concise
since the desired operations are written in a language tailored
for the problem at hand. Because of the dedication of a
language to a problem, one can write "sed ’s/foo/bar/’" and not
several hundred lines of ASM to do the same thing.

Any other language can be found between these two extremes.
Most languages try to be concise, generic (to be able to solve
any problem, not to be dedicated to a task) and to be efficient
by allowing a good enough control over CPU instructions.

C and Zig are just an abstraction over ASM, allowing code to
be compiled for different architectures and operating systems.
Zig is slightly more abstract than C, it is less verbose and more
generic. Zig includes a bit of meta-programming, which C
also does (but not as good10) with its macro system, and a few
constructs allowing to lower verbosity (see the "defer"
keyword). Zig basically is C without most of its historical
debt: no more shitty macros, better cross-compilation (by
including different libcs), more regular syntax, more efficient
compiler, code hot-swapping, standard library with many well-
known and widespread structures, etc.
Beside these differences, C and Zig are in the same category.

C++ is a more abstract language, with abstract concepts, some
of them are inherited from Object Oriented Programming
(OOP) such as objects, classes, inheritance, etc. These
concepts allow to reason about the code in a new way, away
from the final ASM code that will be produced. The trend is
toward some code that’s easier to conceptualize for the
developer, even if it means a slightly less efficient code, a
longer compilation time11 or even (in some cases) a more
verbose code. Though, the language still is as expressive as C.

Java is similar to C++ in many cases (and it is OOP), but
doesn’t compile to a final executable. The code is transformed
into "bytecode", a code representation that’s neither code nor
executable, but allows an interpreter to efficiently execute the
code. Thus, Java isn’t as expressive as C++, but verbosity is
pretty much similar.

Haskell is the first functional programming language of this
list. The language enforces the functional programming style,
providing a language that’s both strict To be defined or to

10. The C macro-system is flawed, it requires another language (the pre-
processor) making any syntax and type verifications difficult. Also, the
pre-processor and C have different syntaxes and rules, all quite
arbitrary, rendering the learning of C more difficult than it should.

11. And it shows: C++ compilation time is a fucking joke.

Notes on Languages Page 5 5. Language paradigms and classifications

finish.

5.2 Procedural vs Object-oriented Programming vs
Functional Programming

5.3 Other categories of languages

6. Lisp (and scheme, etc.)

7. Haskell (and idriss, etc.)

8. Dedicated languages
Most languages are general purpose languages: they let

you solve most problems that can be solved using computers.
Such problems are for example doing equations, printing
documents, displaying a graphical interface, etc. Having
languages able to solve multiple problems is nice: a single
language to learn and problems are solved. However, hard (or
repetitive) problems sometimes lead to create a jargon. In
natural languages, this happens in about every profession,
allowing experts to talk with a precise language while keeping
conversations concise. Thus, general purpose languages can
be cumbersome to use for some problems, where a dedicated,
specialized language may be preferable.

This section provides some insight on a few languages solving
specific problems.

8.1 Algebraic computations: dc and bc

Both dc (desk calculator) and bc (arithmetic language
and calculator) provide a way to perform calculus.

8.1.1 dc

The first one is the most basic. This language is a
stacking (reverse Polish) calculator: numbers are stored on a
stack12.

2 2 + p # computes then prints 4
c # flushes all values on the stack, which

corresponds to the 4 previously computed
1 2 f # prints values on the stack: 2 then 1

8.1.2 bc

The bc language is a preprocessor for dc It provides a
more classical language paradigm since its syntax is C-like.
Also, bc is an interactive tool, easy to pick-up when we need
a calculator.

12. The choice of stacking values and the reverse Polish notation can be
surprising as of today, but is memory efficient. I guess this language
had its place on computers in a time where memory was very scarce.

1 + 2 # prints 3

scale=2 # precision (2 after decimal)
5/4 # prints 1.25

scale=3 # precision (3 after decimal)
5/4 # prints 1.250

for (x=0; x < 10; x++) {
x # prints consecutively values from 0 to 9

}

quit # stops the program (bc is interactive)

The language allows to create functions, and with the -l parameter provides a few
mathematical functions, such as log, sine and cosine, exponential, etc.

bc is a good calculator, simple to use and with arbitrary precision.

echo "scale=3; 5/3" | bc
1.666

8.2 String manipulations: sed and awk

Strings are one of the simplest types. Available in any
general purpose language (one way or another), printable, easy
to understand; strings are a good candidate to be the common
ground data serialization between applications. That was the
Unix way, and still is massively used nowadays.

To manipulate strings, several approaches.

8.2.1 sed

sed is a language to edit and filter stream of data.

8.2.2 awk

awk is a language based on patterns, and which can
easily work on columns instead of whole lines. To be defined
or to finish.

Awk can easily work on columns.

Print file sizes (5th column of the ’ls’ output).
ls -lhA | awk ’{print $5}’

Awk allows to work on patterns.

awk ’/hello/ {print}’

Print a whole line when the pattern "hello" is encountered.

As sed, awk is a language and can be used in a script. The following

Notes on Languages Page 6 8. Dedicated languages

is a simple awk script example.

Print each line containing ’hello’.
/hello/ {

print # no parameters = prints the whole line
}

Print second column when the first one is ’blah’.
$1 ˜ /blah/ {

print $2
}

Awk allows to easily work on specific portion of text, between
patterns. For instance, let’s consider the following text:

<container A>
Blah
<endcontainer>
<container B>
Blah
<endcontainer>
<container C>
Blah
<endcontainer>

With this text, rules can be written to apply only for a specific
’container’.

For more complex operations, people are encouraged to use
more general purpose languages.

8.3 makefile

8.4 Macros Macros Macros: m4

The m4 language helps creating macros, meaning it
changes text within text.

In The Art of Unix Programming (Raymond, 2003) we can
find the following citation about m4.

[...] actually trying to use m4 as a general-purpose
language would be deeply perverse.

— Eric S. Raymond

8.5 shell

8.6 pic

pic is a language to create schemes. Here is an example
of such scheme and the code producing it.

Code: box; arrow; circle

8.7 grap

grap is a language to create graphs.

Exponential curves: growth over time (7%)

0 10 20 30 40 50 60 70 80 90 100

0
50
100
150
200
250
300
350
400
450
500
550
600
650
700
750
800

××
××××××××××

××××××
××××

××××
×××

×××
××
××
××
××
×
×
×
×
×
×
×
×
×
×
×
×

×
linear curve
exponential curve

Produced by
GROWTHFACTOR=0.07
grid bot dotted from 0 to 100 by 10
grid left dotted from 0 to 800 by 50
frame ht 2.5 wid 2.8
define expo { $1+$1*GROWTHFACTOR }
value = 1
draw LINEAR solid
for i from 1 to 100 by 1 do {

next LINEAR at i, i
times at i, value
value = expo(value)

}
l1legend=650
l2legend=600
line from 0,l1legend to 3,l1legend
times at 1,l2legend
"linear curve" ljust at 8,l1legend
"exponential curve" ljust at 8,l2legend
label top "Exponential curves: growth over time

(7%)" up -.2

References

Eric Steven Raymond, The Art of Unix Programming, Pearson
Education, Inc (2003).

