Video scripts for my videos

Philippe Pittoli

ABSTRACT

Check out for newer versions: https://t.karchnu.fr/doc/videos-scripts.pdf

And if you have questions:

karchnu@karchnu.fr

Lastly compiled the 1/3/2023 (day/month/year, you know, like in any sane civilization).

1. Zig: real-life example with LibIPC

I really hoped for this video to come way sooner, but
hey, LIFE HAPPENED. Also, thanks a lot for your very posi-
tive comments on my first video, | hope you’ll like this video,
too.

1.1 Introduction

In the past few weeks | did a library called LibIPC.
This library provides inter process communications, making
processes to exchange messages. | create a service and clients
can come talk to it. Simple. No need to dig too much in what
this library actually does for now, I’ll explain that in another
video. However, this piece of code forced me to explore many
aspects of Zig. Today, I'll to provide a feedback on what | ac-
tually used, not in any particular order. Despite making a
video on Zig (almost two years ago), | didn’t code in Zig since
then. So, this feedback is from the point of view of someone
just starting (for real) with Zig. And | hope you will find this
interesting.

1.1.1 Quick reminder

Zig still isn’t ready for production. However, probably
everything you’ve learned a few years back on the language it-
self is still valid. Changes happen mostly in the standard li-
brary.

1.1.2 In this video

Documentation (official, ziglearn)
OS abstraction
Read and Write structures

A few language constructions
Anonymous structures serving as options, switch, orelse...

» Misc functions
Timer, a bit of networking, Logging, Built-ins...

 Bindings
e Errors

1.1.3 Not in this video

Parallelism and concurrency stuff
* async, threading, etc.

Build system

1.2 From C to Zig

LibIPC was firstly developed in C. Code wasn’t too
horrible but quite redundant, | repeated a few things regarding
error cases. Every function returned a structure with a code
(which was an enumeration telling if an error happened or not)
and eventually an error message. To avoid this redundancy, |
did some macros, but it quickly did get out of hand. 1I’m not
too ashamed of my C library, but | wasn’t confident either
even though my tests worked.

I rewrote the library in Zig, and redundancy was gone. But
since both libraries aren’t exactly the same (and I’ll spare you
the details), it’s hard to make a fair comparison. Let’s say that
despite my macros the C library was about 2 000 lines, and my
Zig library is about half that. | think that for the same fea-
tures, a rough estimate would be about 40 % fewer lines in the
Zig version. So the code doesn’t have ugly macros and still
would be 40 % smaller.

1.3 Documentation

Official documentation of the standard library improved
a lot since my last video. For example, when browsing func-
tion signatures, structures can be clicked on, leading to their

Video scripts for my videos

Page 2

1. Zig: real-life example with LibIPC

documentation. That’s very basic but it wasn’t there!

However, documentation is still experimental and there is a
massive room for improvement. 1’ll give you a few examples |
encountered during the development of LibIPC. But it’s fine
since it was completely expected and Zig developers said it
several times: work has (kinda) just begun on documentation.

As a first example, let’s follow std.MultiArrayList. We can
see this function:

//_items is:
fn items(self: Self, comptime field: Field)
[1FieldType(field)

What is Self? Self is @This.

const Self: type = @This();

This is fine since it is everywhere in the standard library,
"Self" means the current structure.

Okay, but what is "Field"?

const Field: meta.FieldEnum(S) = meta.FieldEnum(S);

And up to this, when FieldEnum is selected, there is a list of a
single parameter which is a "type", but parameters of what,
there is no function here? So documentation is still confusing
(or just broken) on some parts.

Documentation can also be frustrating regarding types that are
related to a specific OS (basically all C types). | was search-
ing for a type, this type depends on a sub-type, which depends
on the OS, which ultimately... cannot be documented automat-
ically. Example:

std.fs.File_Mode => const Mode: "mode t" = os.mode_t;

os.mode_t => const mode_t: "mode_t" = system.mode_t

But again, that’s fine. These C types can easily be found in the
code, the ultimate source of truth.

Finally, some other types aren’t correctly documented. For ex-
ample, Writer types (such as in std.fs.File or std.ArrayListAl-
igned):

const Writer: if (...) { ... }y=10F (...) { --- };

But I think | know why this one is a bit hard to document.
We’ll see that later.

So, what’s the state of documentation? I’ll say that it came to
the point where it’s actually useful. | don’t remember reading
the documentation at all a few years ago, now I do use it and it
works for me almost everytime. | just presented a few exam-
ples where documentation fails so you won’t be surprised:
paint is still wet.

So, how to produce this documentation? One way | used:

zig build-exe -femit-docs src/main.zig

This creates a docs directory with the documentation of our
program (everything that is mentionned in the file, directly or
indirectly). To serve it, | use darkhttpd.

darkhttpd docs/ addr 127.0.0.1 port 8000

And thanks to Zig documentation being a web application,
there are no latencies whatsoever. That’s really great to switch
from a page to another without waiting at all. Some shortcuts
make the browsing delightful, even though it’s not perfect in
any way. A search doesn’t provide the most useful results
first, scrolling is often required.

Beside the official documentation of the Zig standard library, a
few other documentations popped up over the years. | mostly
used one of them: ziglearn.org which is a good source since
there are a few examples. But it’s not up-to-date, and it seems
stale: no new chapters in a very long time. | wanted to learn
how to do bindings (meaning building Zig code to use it in C
and other languages). | wanted to do that more than a year
ago, and it was missing in the chapter 4, and still is! Also, |
wanted to learn about the event loop since libIPC is built upon
it. But, bad luck, there isn’t documentation on that either. 1 fi-
nally did my own event loop, which only is a simple call to the
poll syscall, and that’s will be fine for now.

1.4 Language constructions

1.4.1 Anonymous structures serving as options

Using anonymous structures as options is widespread in
the standard API, since it’s really convenient. An example of
this can be seen in the std.net namespace.

Video scripts for my videos

1. Zig: real-life example with LibIPC

const Server = struct {
pub const Options = struct {
some_optionl: u32 = 128,
some_option2: bool = false,

pub fn init(options: Options) Server {

}
}:

// No need to create a Service.Options structure.
var x = Server.init(.{.some_optionl = 10});

An anonymous structure is used as an associative array of op-
tional parameters. No need to instanciate a Server.Options
structure. Again, code like this is everywhere in the standard
library.

1.4.2 orelse keyword

The orelse keyword helps writing clearer code. It is
working with an optional value, and in case the value is null
the right part of the keyword is executed.

var value = db.get(key) orelse return error._notHere;

Orelse is a small improvement from C that makes the code
slightly more concise using a simple and widespread con-
struct. And with defer and errdefer keywords, previous allo-
cations can be safely freed without explicit reference in the er-
ror case.

Also, you can use orelse to provide a default value.

var value = db.get(key) orelse 10;

This construction exists already in many other languages, it
was just missing for C. That’s fixed.

1.4.3 Switch

First, | really like that the compiler is crazy fast. My
workflow is based on not to paying any attention to the docu-
mentation regarding errors, but just trusting the compiler. The
compiler tells me what are the possible errors, then | chose
what to do. For example, some errors can be safely ignored,
like when | try to create a directory that already exists.

// Create the run directory, where all UNIX sockets will be.
std.os.mkdir(rundir, 000770) catch |err| switch(err) {
error._PathAlreadyExists => {
log.info("runtime directory ({s}) already exists (ignoring)", .{rundir});

else => {
log.warn(“runtime directory ({s}): {any}", .{rundir, err});
return err;
3
3

Another pretty similar example, working with environment
variables. | want to do stuff if some environment variable is
set (IPC_NETWORK), and there are three possible cases. First
thing, the variable exists, it is pushed in the network_envvar
variable, and the function goes on. Second, the variable
doesn’t exist, in this case that’s still fine, I just return from the
current function. Last case, there is a problem that isn’t just a
missing environment variable, it could be serious like being
out of memory, so | return the error.

var network_enwvar = std.process.getEnvVarOwned(fba, "IPC_NETWORK™) catch |err| switch(err) {
/7 error{ OutOfiemory, EnvironmentVariableNotFound, Invalidutf8 } (ErrorSet)
-EnvironmentvariableNotFound => { return; }, // no need to contact IPCd
else => { return err; },

T

1.5 Misc functions

1.5.1 A few built-ins

Why do | talk about this? Because out of context, built-
ins functions could be intimidating, specially for people com-
ing from high level languages. But once you actually en-
counter the problem they solve, they are completely natural to
use.

First, a built-in is just a function that comes directly from the
compiler. No need to import anything. That’s it!

Why are they useful? There is a video about this by Loris Cro
called "A look at Zig’s built-ins" posted two years ago.
https://www.youtube.com/watch?v=V0sthxzzN3U

For example, | used a few built-ins (such as @as) mostly be-
cause | had to manage low level code. The @as built-in is for
type coercion.

[@as] Performs Type Coercion. This cast is allowed when
the conversion is unambiguous and safe, and is the pre-
ferred way to convert between types, whenever possible.

— official Zig reference

In clear terms, you tell the compiler you know types are differ-
ent but they are compatible so it has to perform a safe conver-
sion.

index = @as(usize, 0);
origin = @as(i32, 0);

@as is useful in many cases so you’ll probably use it, but most
built-ins are specific! Don’t feel overwhelmed by reading the
Zig reference, you can safely ignore them for now. Despite
the fact that | did low-level code, | only used a few built-ins.

Video scripts for my videos

Page 4

1. Zig: real-life example with LibIPC

In normal code

as type coercion

truncate truncate an integer
enumTolnt convert an enum to int
Within exchange-fd | (very specific code)
ptrCast type coercion

sizeOf size of a type

TypeOf type info

alignOf memory alignment
errorName use error name in a string
intCast type coercion

1.5.2 Zig API looks like libc API

A good thing coming from C, Zig standard library pro-
vides a similar API you’re used to. A few examples:

libc
open(path, flags,...)
read(fd, buffer, size)
memcpy(dest, src, size)
mkdir(path, mode)
unlink(path)

Zig std
std.os.open(path, flags, perms)
std.os.read(fd, buffer)
std.mem.copy(dest, src, size)
std.os.mkdir(path, mode)
std.os.unlink(path)

And it works the same way on all operating systems. Yes,
even on Windows, despite not really using file descriptors...
more on that later.

And in the case you just want to call the libc directly:

| umask(mask) | std.c.umask(mask) |

1.5.3 Timer

From now and then | want to know the duration of some
operations. In C, this involves a structure that isn’t as simple
as it could be.

struct timeval tv_1;
struct timeval tv_2;

gettimeofday(&tv_1, NULL);
// ... some operation...
gettimeofday(&tv_2, NULL);
int nb_sec_ms

int nb_usec_ms
int time_elapsed_ms

(tv_2.tv_sec - tv_1l.tv_sec) * 1000;
(tv_2.tv_usec - tv_1l.tv_usec) / 1000
(nb_sec_ms + nb_usec_ms);

In the Zig standard library, there is a simple structure
(std.time.Timer) that does the job perfectly:

var timer = try std.time.Timer.start();
// ... some operation...

var duration = timer.read() / 1_000_000; // ns -> ms

1.5.4 Logging

As we saw in some examples, a logging system can be
used to provide runtime information when something happens.
This can be an error, a warning, an information or a debug
message. std.log is straightforward. Depending on the
compilation mode, some of these instructions may or may not
be compiled. For example, unless in Debug mode, debug
prints won’t be compiled.

std.log.err(*'something bad happened, 1”1l probably just crash",
std.log.warn('something potentially bad happened”, .{}):
std.log.info("simple info”, _{});
std.log.debug(""hello this is debug™, .{});

-

Your logs can also be "scoped", meaning that you can provide
a bit of context. In this case, you create a "log" structure that
can be called as std. log, but printed string will have a short
prefix.

const log = std.log.scoped(.libipc_context);
log.err(*'something bad happened”, -{}):;
log.debug(**hello this is debug", -{});

1.5.5 ArrayList

A structure | used a few times: ArrayList. | just needed
to store a dynamic list of something.

var al = ArrayList(SomeStructure) . init(allocator);
al .append(.{ -.value = 30 });
var v = al.items[index].value;
for(al.items) |*it] {
log.info("{s}", .{it});

var item = al_swapRemove(index);
al.deinit();

This is an example of about everything | did with ArrayLists.
Init, append, loop over items, remove an item based on its in-
dex, then I free the array. Very straightforward, simple.

Also, at some point | had to create two ArrayLists sharing
their indexes. When | added a value in one of them, | added
something in the other. When | removed an entry at an index |
had to remove the same entry in the other ArrayList (same

Video scripts for my videos

Page 5

1. Zig: real-life example with LibIPC

index). Why? Forget about it. | will spare you the details. But
in this case the MultiArrayList structure (advertised many
times by Andrew), seems relevant. So, I’'ll probably use it in a
near future.

1.5.6 Networking structures

Networking is performed through a few main structures.
StreamServer and Stream structures represent a server and a
client. They enable working with sockets and their specific er-
ror set, and that’s mostly it. After that, there is the Address
structure, which is generic enough to handle different address-
ing, such as IPv4, IPv6, and also UNIX socket paths. Having
worked with C networking structures in the past, | have to say
this is an improvement.

And why is this so great to use while it was a pain in the ass in
C? Several reasons: because Zig has default values for struc-
ture attributes; anonymous structures use as options; dotted
notation and namespaces; and surely because of the error sys-
tem. None of that being complex features!

// connectUnixSocket -> Stream

var stream = net.connectUnixSocket(path)

// Stream has many read and write functions,
// including “reader” and “writer’.

// Listen on an UNIX socket.

var server = net.StreamServer._init(.{}):;

var socket_addr = try net.Address.initUnix(path);
try server._listen(socket_addr);

1.5.7 Tests

Testing code in Zig really is simple.

zig test src/main.zig

Test code blocks in the standard library taught me most of the
language. For a first stab at an API, that’s great. | won’t show
to you much tests, just read standard library tests.

1.5.8 Exchanging file descriptors

UNIX sockets, that |use intensively in LibIPC, can
share a file descriptor to another process. A server can open a
file or a socket then send it to a client, for example.

This rather obscure property is actually used in LibIPC. 1 did
a few functions to exchange file descriptors thanks to a few
redditors. They provided me parts of very specialized low
level code, that | completed. Clearly, my code isn’t perfect in
any way, but it works.

| wanted to talk about this because | think it can be useful to
have this in the standard library. So, if you have time, please,
be my guest and make it happen. Code is free.

1.6 OS and Zig abstractions

A well-design operating system provides abstractions to
painlessly work with your hardware. That’s almost its entire
job: to create a simple environment for developers. Working
with files is a good example of this.

Opening a file is asking for a file to your kernel. You provide
a path, your kernel provides a number on Unix systems and on
Linux. Why a number? Because it is related to a table your
kernel has regarding your process. Number 0 is your input
(when you type on your keyboard). Number 1 is your stan-
dard output (when you print stuff). Number 2 is your error
output. When you open files, you get new numbers: 3, 4, etc.

Then, to read or write something in your file, you use this
number to tell what file you’re working on. So, to write some-
thing in your file, in C you write something like this:

write(fd, buffer, size);

// Example
write(3, “"hello™, 5);

And a socket is just another entry in the same table. Direct
benefit of this: you can use the exact same functions as before.
A socket is a number, which you can use exactly as any other
file descriptor.

So, | repeat. On UNIX and Linux, the API is simple: you get
an integer for whatever you wanted to reach (socket or file),
then you have access to a set of read and write functions, and
that’s it. Simple, coherent, elegant.

Nice, why | am talking about this? BECAUSE OF COURSE
IT’S DIFFERENT ON WINDOWS. And I think that’s one of
the main reasons why it is so difficult to write portable code.
We have beautiful abstractions on well-designed operating
systems... that we cannot use anymore. Thus, the language (or
its standard library) has to overcome differences between oper-
ating systems, it is forced to drop this simple and elegant API
and make its own. Doing portable code involves (some) com-
plexity.

But, good news everyone! The Zig standard library actually
handles this complexity for us, and the std.os namespace is
full of simple portable functions. The API tends to be as sim-
ple as on Linux and Unix systems while being mostly
portable. That’s even one of the things that got me interested
in Zig, a few years back.

Video scripts for my videos

Page 6

1. Zig: real-life example with LibIPC

Also, complexity in the Zig standard library is stacked. Let
me explain: in Zig you can access syscalls directly. No sugar.
See the std.c namespace. But, if you want to benefit from the
zig error system (and to get mostly portable code), you can use
the std.os namespace, which is more or less direct syscalls
with a very light overlay. Finally, a more "modern” approach
could be considered with specialized structures for everything.
The standard library provides structures such as File, Stream-
Server and so on. Zig can look like high-level code, as an ob-
ject-oriented language for example.

So, if you want just C, you have it. If you want portable C
with a less dumb error management, you have it. And if you
want a library with high-level structures with tons of special-
ized functions, you have it, too.

As we’ll see, having high-level structures doesn’t imply (too
much) code redundancy.

1.7 Reader and Writer structures

These both structures are very nice to read and write
streams of binary data. Reader and Writer are specially rele-
vant for network packets, since they are just serialized data.
The UDP protocol for example is described in a simple 3-page
RFC, its format is: src port, dest port, length, checksum. In
Zig, using a Writer, this may look like this:

//udp_msg is a Writer

udp_msg.writelntBig(ul6, 9000); // src
udp_msg.writelntBig(ul6, 80); // dest (port 80, HTTP)
udp_msg.writelntBig(ul6, 100); // length (100-byte message)

udp_msg.writelntBig(ul6, 0x8301); // checksum

//writelntBig = Big-endianness, network endianness

That way, you don’t have to handle an index, which is one of
the perks of these structures.

Reader and Writer are also relevant to read and to write any
file with a binary format. In this case, you can open a file then
get a Writer structure out of it.

//in std.fs.File
fn writer(file: File) Writer

So, Reader and Writer structures are a convenient way to read
and write streams of data. Files, network, in-memory data,
logs, etc.

LibIPC is particularly simple in that regard: a LibIPC packet is
a length and upper-layer payload. That’s it. Even UDP is
more complex than that.

Sometimes, | wanted a writer structure for in-memory data.

// Stacked buffer
var buffer: [1000]u8 = undefined;

// Stacked buffer -> fixed buffer stream
var fbs = std.io.fixedBufferStream(&buffer);

// Fixed buffer stream -> writer
var writer = fbs.writer();

// do something with the writer
writer.write("'stuff '");
writer.write("important stuff ");
writer._write(another stuff '");

// Get a slice of what has been written
var stuff = fbs.getWritten();

But that can be a bit complicated. In the case you just want a
snprintf function, meaning to print in a buffer, there’s
std.fmt.bufPrint for that.

var buffer: [1000]u8 = undefined;
var path = try std.fmt.bufPrint(&buffer, "{s}/{s}"
, -{ ctx_rundir, "simple-context-test" });

Now, the good news! You can actually see the documentation
for a Writer. The Writer within std.io is correctly docu-
mented. And it’s also quite confusing, because it’s a function
returning a structure. This structure actually is used to create
other Writers. Let me explain. This std.io.Writer function is
a way to create Writer structures, all having the same API, the
same functions.

Why not just using a Writer structure once and for all? Be-
cause depending on where you write data, you’ll get different
errors. What can fail when writing to a file is different to what
can fail writing to the network. Also, writing to a file is differ-
ent from writing to an ArrayL.ist structure. But because every-
thing is kinda the same besides that, only three parameters are
needed for this function to provide a Writer structure in all
Kinds of situations.

pub fn Writer(
comptime Context: type,
comptime WriteError: type,
comptime writeFn: fn (context: Context,
bytes: []Jconst u8) WriteError!usize,
) type {

As you see in this function signature, three compile-time
known parameters are required. The context, meaning the
type of the structure where to write data, such as a file, a buffer
or a socket. The second parameter is the set of errors that can
happen when writing data. Finally, the function to actually
write data. Both Context and WriteError are used within the

Video scripts for my videos

1. Zig: real-life example with LibIPC

function signature writeFn. That is valid code and typing is
verified by the compiler.

pub const Writer = io.Writer(File, WriteError, write);

pub fn writer(file: File) Writer {
return .{ .context = file };
¥

I wanted to show to you this function because std.io.Writer is
a good example of generic programming. That’s a way to en-
sure a consistent API accross different situations without re-
quiring either new concepts (such as interfaces) or code redun-
dancy. Sure, there is the comptime concept, meaning that a
parameter has to be known at compile time (and can be a type
instead of a variable). But that’s manageable and there is no
need to introduce Object Oriented Programming just for that.
A function returns a structure, both being trivial and pervasive
concepts in almost every known programming language.

As you probably guessed it by now, the Reader is the exact
same thing.

pub const Reader = i10.Reader(File, ReadError, read);

pub fn reader(file: File) Reader {
return .{ .context = Ffile };
}

1.8 anytype

Now we know about Reader and Writer, let’s see an ex-
ample. You have a function which writes stuff. Whatever it
could be, like logs, serialized data, anything. You may want to
write a function that is writing to a writer instead of writing di-
rectly to your target. This way, the code can now be tested and
even used in a different context.

So, let’s say you want to write a function taking a writer as a
parameter. What is the type of the writer? You want your
function to work with any writer, not just the File.Writer struc-
ture for example. Can be painful to write, while all you want
is just something that accepts the functions you’ll call on it.

// create a server path for the UNIX socket based on the service name
pub fn server_path(self: *Self, service_name: []Jconst u8, writer: ??) !void {
try writer._print("{s}/{s}", .{ self.rundir, service_name });

One easy answer to that is to write "anytype" as its type, and
you’re good to go. That is a little hack I used since | wasn’t
sure about the right type | should use, and it works. That’s ba-
sically duck typing.

1.9 Bindings

A binding is a way to use code from another language.
Most general purpose languages can use code (functions and
structures) from C if they write bindings for it. How this is
translates in actual code depends on the language. For exam-
ple, Zig can directly import C code, no need for bindings. In
Crystal, a binding can be a simple function signature declara-
tion.

But in my case, | want to enable other languages to use my li-
brary written in Zig. To that end, we can "export" a Zig func-
tion this way:

export fn ipc_context_init(ptr: **Context) callconv(.C) i32 {
3
export fn ipc_service_init(ctx: *Context, servicefd: *i32,

service_name: [*]const u8,
service_name_len: ul6) callconv(.C) i32 {

Thanks to this, it is possible to call Zig code from any lan-
guage which can call C code, including the C language.

I made a git repository with an example of this, without any
sugar, so the different interactions can be understood. This
shows how to create a library in Zig which can be imported
everywhere. | didn’t try to export structures, just functions.

1.10 Errors: still room for improvement

I encountered few confusing errors. | had the presence
of mind to keep a trace of at least one of them. But keep in
mind that this doesn’t matter much: developement was fairly
straightforward and painless.

I got the following error when the result of a function call
(fetchSwapRemove) was a single value (anonymous hash).

src/switch.zig:125:37: error: binary operator “|*
has whitespace on one side, but not the other.
self._db.fetchSwapRemove(fd) |k,v|{

This error is just plain confusing, it didn’t help one bit.

I got another, when | had a function with a large array located
in the stack. | guess this broke the compiler since it runs some
of the code at compilation-time. But I tried to recreate the er-
ror and it doesn’t fail anymore, so | guess this was fixed.

1.11 Hexdump

Lastly, since I did some networking code, | wanted to
print an hexadecimal dump of packets | sent or received. |
used a library I just copy-paste but it wasn’t working propertly
so | kinda rewrite the whole thing.

Video scripts for my videos

Page 8

1. Zig: real-life example with LibIPC

It’s not in a separate repository, but you can copy-paste it!

1.12 Conclusion

My experience is simple: coming from C, | saw no
drawbacks working with Zig, at all. An experienced C devel-
oper can use Zig as in C and it would still more concise and
readable. | even bet the generated binary would be almost
similar. In case you want to enjoy the Zig error system, AS
I ADVISE YOU TO, you can use std.os, and maybe a few
other namespaces such as std.mem. To me, that’s a sweet
spot. And if you want more, the standard library provides
many convenient and portable structures. All of that without
introducing any new complex concept. So my point of view
about Zig hasn’t changed since my first video. Zig really is C
without the bullshit and I’m now even more confident to say it.

To be fair, I don’t know if there is a domain where Zig really is
outstanding. | will use it instead of C for writing libraries and
system applications; programs | want to see working on all op-
erating systems and architectures, including constraint ones,
such as a raspberry pi, some routers, etc. Also, I’ll use Zig to
write libraries. | do prefer other languages, such as LISP and
Haskell, but | consider the Zig tooling to be a better fit for sys-
tem programing.

Also, most problems | mentionned (such as documentation)
are well-known and expected.

1.13 Other projects and next videos

I did a learn x in y minutes on Zig A FREACKING
YEAR AGO but it’s not working because of some bullshit
with syntax highlighting (a library that wasn’t properly up-
dated). It may or may not change soon.

Beside, | want to continue doing videos on Zig, at least a few.
On the build system for example, maybe the network API,
async and a few other things.

As a side note, about the build system.
| When you have a hammer, everything looks like nails.

— Somebody, somewhere (at some point in time)

To me, this reasonates a lot with the Zig build system. Some
consider it great, | have my concerns. Since it’s a big subject,
I’ll dedicate an entire video on the matter.

Beside Zig, | spent a certain amount of time doing other stuff |
want to talk about.

» Sure, | did LibIPC and | want to talk about it.

| did it to serve as a foundation for the rewrite of netlib.re
(freed network) which is a website | did 8 years ago to pro-
vide free domain names, currently in Perl (and French).
And | want to rewrite it in Zig and probably Crystal and
PureScript.

» Also, I had a lot of fun doing a package builder based on
makefiles for a toy operating system.

| learnt roff, which is an excellent tool to produce docu-
ments (first developed in the 70s), and | want to talk about
it. And | did a template to help new users getting started
with roff.

* And (with roff) | started a book on Haskell and 1 did a few
book reviews and summaries.

* | learnt LISP and I played with it doing a database library to
store documents (no SQL, no DBMS, no dependencies)
with indexes mapped on the file system.

» Something I already did in Crystal, too.

 Also, do you know CBOR? CBOR is a very efficient serial-
ization library, a binary JSON. Probably the most concise,
simple and efficient serialization library, ever. Well, | did
transparent bindings to CBOR for the Crystal language.
Meaning that you can automatically serialize and deserialize
any Crystal object in CBOR.

So as you can see, | did stuff, | want to do stuff, and I think it’s
time to share it with you. So I’ll try to post more videos, more
frequently than once every two years, at least. It really is good
to be back. As the last time, everything I talked about can be
found in the links below. If you want to talk, you can post
comments. Have a good day.

